Conditional probability: Difference between revisions
imported>Chris Day No edit summary |
imported>Wietze Nijdam No edit summary |
||
Line 1: | Line 1: | ||
{{subpages}} | {{subpages}} | ||
'''Conditional probability''' is one of the most important concepts in [[probability theory]]. In theory it is the probability that a given event occurs given the knowledge of some partial information about the results of the experiment. | '''Conditional probability''' is one of the most important concepts in [[probability theory]], indicating the probability if one or more conditions are met. In theory it is the probability that a given event occurs given the knowledge of some partial information about the results of the experiment. As a result of this knowledge the possible outcomes may be restricted, and hence the probability of any event may change. This changed probability is the conditional probability. | ||
For example, take a die tossing experiment. Assuming the die is fair, the probability of it falling on 1, 2, 3, 4, 5 or 6 is 1/6 (evenly split). If we are given partial information about the final result e.g. The die falls on an even number (i.e either 2, 4 or 6), the conditional probabilities for all 6 faces of the die change. The probability of obtaining a 1, 3 or 5 will go down to 0, while the probability of obtaining a 2, 3 or 6 will go up to 2/6 (or 1/3). These new probabilities are conditioned on the fact that our result is even, and therefore called conditional probabilities. | For example, take a die tossing experiment. Assuming the die is fair, the probability of it falling on 1, 2, 3, 4, 5 or 6 is 1/6 (evenly split). If we are given partial information about the final result e.g. The die falls on an even number (i.e either 2, 4 or 6), the conditional probabilities for all 6 faces of the die change. The probability of obtaining a 1, 3 or 5 will go down to 0, while the probability of obtaining a 2, 3 or 6 will go up to 2/6 (or 1/3). These new probabilities are conditioned on the fact that our result is even, and therefore called conditional probabilities. |
Revision as of 15:36, 31 January 2011
Conditional probability is one of the most important concepts in probability theory, indicating the probability if one or more conditions are met. In theory it is the probability that a given event occurs given the knowledge of some partial information about the results of the experiment. As a result of this knowledge the possible outcomes may be restricted, and hence the probability of any event may change. This changed probability is the conditional probability.
For example, take a die tossing experiment. Assuming the die is fair, the probability of it falling on 1, 2, 3, 4, 5 or 6 is 1/6 (evenly split). If we are given partial information about the final result e.g. The die falls on an even number (i.e either 2, 4 or 6), the conditional probabilities for all 6 faces of the die change. The probability of obtaining a 1, 3 or 5 will go down to 0, while the probability of obtaining a 2, 3 or 6 will go up to 2/6 (or 1/3). These new probabilities are conditioned on the fact that our result is even, and therefore called conditional probabilities.