Yersinia pestis: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Ariana Aronis
imported>Ariana Aronis
Line 36: Line 36:
Does it have any plasmids?  Are they important to the organism's lifestyle?
Does it have any plasmids?  Are they important to the organism's lifestyle?


The genome structure has been decoded for two of the three sub-species of Yersinis pestis, the KIM strain and the CO92 strain. The chromosome of the KIM strain contains 4,600,755 base pairs and the chromosome of the CO92 strain has 4,653,728 base pairs. Yersinia pestis is also the host to the plasimds pCD1, pPCP1, and pMt1 which along with a pathogenicity island called HPI encode the proteins that cause the infamous pathogenicity of the bacteria. These virulence factors are essential for the invasion of the bacteria into the host, and the injection of its proteins into the cell.
The genome structure has been decoded for two of the three sub-species of Yersinis pestis, the KIM strain and the CO92 strain. The chromosome of the KIM strain contains 4,600,755 base pairs and the chromosome of the CO92 strain has 4,653,728 base pairs. There are 4,012 protein-coding genes (including 149 pseudogenes). Yersinia pestis is also the host to the plasimds pCD1, pPCP1, and pMt1 which along with a pathogenicity island called HPI encode the proteins that cause the infamous pathogenicity of the bacteria. These virulence factors are essential for the invasion of the bacteria into the host, and the injection of its proteins into the cell.


==Cell structure and metabolism==
==Cell structure and metabolism==

Revision as of 09:28, 29 March 2008

This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.
Attention niels epting.png
Attention niels epting.png
This article is currently being developed as part of an Eduzendium student project. If you are not involved with this project, please refrain from collaboratively developing it until this notice is removed.
Articles that lack this notice, including many Eduzendium ones, welcome your collaboration!


Classification

Tosco Refinery.jpg

Higher order taxa

Domain: Eubacteria

Phylum: Proteobacteria

Class: Gamma Proteobacteria

Order: Enterobacteriales

Family: Enterobacteriaceae

Genus: Yersinia

Species: Yersinia Pestis

Species

Yersinia pestis

Example.jpg

Description and significance

Describe the appearance, habitat, etc. of the organism, and why it is important enough to have its genome sequenced. Describe how and where it was isolated. Include a picture or two (with sources) if you can find them.

Genome structure

Describe the size and content of the genome. How many chromosomes? Circular or linear? Other interesting features? What is known about its sequence? Does it have any plasmids? Are they important to the organism's lifestyle?

The genome structure has been decoded for two of the three sub-species of Yersinis pestis, the KIM strain and the CO92 strain. The chromosome of the KIM strain contains 4,600,755 base pairs and the chromosome of the CO92 strain has 4,653,728 base pairs. There are 4,012 protein-coding genes (including 149 pseudogenes). Yersinia pestis is also the host to the plasimds pCD1, pPCP1, and pMt1 which along with a pathogenicity island called HPI encode the proteins that cause the infamous pathogenicity of the bacteria. These virulence factors are essential for the invasion of the bacteria into the host, and the injection of its proteins into the cell.

Cell structure and metabolism

Describe any interesting features and/or cell structures; how it gains energy; what important molecules it produces.

Ecology

Describe any interactions with other organisms (included eukaryotes), contributions to the environment, effect on environment, etc.

Pathology

How does this organism cause disease? Human, animal, plant hosts? Virulence factors, as well as patient symptoms.

Application to Biotechnology

Does this organism produce any useful compounds or enzymes? What are they and how are they used?

Current Research

Enter summaries of the most recent research here--at least three required

References

[Sample reference] Takai, K., Sugai, A., Itoh, T., and Horikoshi, K. "Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney". International Journal of Systematic and Evolutionary Microbiology. 2000. Volume 50. p. 489-500.