imported>Wlodzimierz Holsztynski |
imported>Joe Quick |
Line 12: |
Line 12: |
| <!-- Taken from en.wikipedia.org/wiki/Fibonacci number --> | | <!-- Taken from en.wikipedia.org/wiki/Fibonacci number --> |
|
| |
|
| The sequence of fibonacci numbers start: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ... | | That is, the first number in the sequence is 0, the second number is 1, and each subsequent number is equal to the sum of the previous two numbers. The sequence of fibonacci numbers start: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ... |
|
| |
|
| The sequence of Fibonacci numbers was first used to represent the growth of a colony of rabbits, starting with a single pair of rabbits. | | The sequence of Fibonacci numbers was first used to represent the growth of a colony of rabbits, starting with a single pair of rabbits. |
In mathematics, the Fibonacci numbers form a sequence defined by the following recurrence relation:
![{\displaystyle F_{n}:={\begin{cases}0&{\mbox{if }}n=0;\\1&{\mbox{if }}n=1;\\F_{n-1}+F_{n-2}&{\mbox{if }}n>1.\\\end{cases}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/00008893a71eebbf4e7d89a0c162fe6359f5ac8c)
That is, the first number in the sequence is 0, the second number is 1, and each subsequent number is equal to the sum of the previous two numbers. The sequence of fibonacci numbers start: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ...
The sequence of Fibonacci numbers was first used to represent the growth of a colony of rabbits, starting with a single pair of rabbits.
Properties
We will apply the following simple observation to Fibonacci numbers:
if three integers
satisfy equality
then
![{\displaystyle \ \gcd(a,b)\ =\ \gcd(a,c)=\gcd(b,c).}](https://wikimedia.org/api/rest_v1/media/math/render/svg/fe1f82cbf2226190742b09093e29ac452641b288)
![{\displaystyle \gcd \left(F_{n},F_{n+1}\right)\ =\ \gcd \left(F_{n},F_{n+2}\right)\ =\ 1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/51c297f4b91a052a7d085403967d996e3bddff0e)
Indeed,
![{\displaystyle \gcd \left(F_{0},F_{1}\right)\ =\ \gcd \left(F_{0},F_{2}\right)\ =\ 1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/49e543d214867aa0fa8a655868503e75ca70db94)
and the rest is an easy induction.
![{\displaystyle F_{n}\ =\ F_{k+1}\cdot F_{n-k}+F_{k}\cdot F_{n-k-1}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c56dbbf64bc6a2a24d305387effe371a0dd3a5c0)
- for all integers
such that ![{\displaystyle \ 0\leq k<n.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c636a6f01410974e163c0eb0bc4b7e32957252d6)
Indeed, the equality holds for
and the rest is a routine induction on
Next, since
, the above equality implies:
![{\displaystyle \gcd \left(F_{k},F_{n}\right)\ =\ \gcd \left(F_{k},F_{n-k}\right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/21c9e1b6f394d1e5dbc622983c9f2fdd5a9def7c)
which, via Euclid algorithm, leads to:
![{\displaystyle \gcd(F_{m},F_{n})\ =\ F_{\gcd(m,n)}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/509a36e793991216a9af4617b4efcb1e1ebe27fc)
Let's note the two instant corollaries of the above statement:
- If
divides
then
divides ![{\displaystyle \ F_{n}\ }](https://wikimedia.org/api/rest_v1/media/math/render/svg/53f64aac3251d0ee585a0f71f447fcecafc51476)
- If
is a prime number different from 3, then
is prime. (The converse is false.)
![{\displaystyle \sum _{i=0}^{n}F_{i}^{2}=F_{n}\cdot F_{n+1}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e47854eb1d57bbc4176621398a343a8ee4451527)
We have
![{\displaystyle F_{n}\ =\ {\frac {1}{\sqrt {5}}}\cdot \left(\left({\frac {1+{\sqrt {5}}}{2}}\right)^{n}-\left({\frac {1-{\sqrt {5}}}{2}}\right)^{n}\right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a91a8b5d28fd30b9fe698327c3483f77be546519)
for every
.
Indeed, let
and
. Let
![{\displaystyle f_{n}\ :=\ {\frac {1}{\sqrt {5}}}\cdot (A^{n}-a^{n})}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7cdacf5074f5560a0aa14ef534782b08de4f8011)
Then:
and ![{\displaystyle \ f_{1}=1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c754577bc3a87fedb269c17aa0a4afd510954174)
hence ![{\displaystyle \ A^{n+2}=A^{n+1}+A^{n}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c2d6a827b03e84581e3473bf1e4b87934f3fe79e)
hence ![{\displaystyle a^{n+2}=a^{n+1}+a^{n}\ }](https://wikimedia.org/api/rest_v1/media/math/render/svg/c521491bf1e404a03afaede928e51d6bc7890dfc)
![{\displaystyle f_{n+2}\ =\ f_{n+1}+f_{n}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1b9a2928ddeaa5a041ae0e96cf0ae8bf57d987dc)
for every
. Thus
for every
and the formula is proved.
Furthermore, we have:
![{\displaystyle A\cdot a=-1\ }](https://wikimedia.org/api/rest_v1/media/math/render/svg/c6e67289e80bb0012bf18aa45e39153cd61d4553)
![{\displaystyle A>1\ }](https://wikimedia.org/api/rest_v1/media/math/render/svg/8bd1c3643c485dcaca05621ea6056995752259f2)
![{\displaystyle -1<a<0\ }](https://wikimedia.org/api/rest_v1/media/math/render/svg/6ed51d0637826bf787277dfbab290b1edc0ece29)
![{\displaystyle {\frac {1}{2}}\ >\ \left|{\frac {1}{\sqrt {5}}}\cdot a^{n}\right|\quad \rightarrow \quad 0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a0b44c516a34da87eb8a4ff4b72d49472efbbb21)
It follows that
is the nearest integer to ![{\displaystyle {\frac {1}{\sqrt {5}}}\cdot \left({\frac {1+{\sqrt {5}}}{2}}\right)^{n}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/07bfffce67fac19c1ffa5ee311cdc6d400c2e587)
for every
. The above constant
is known as the famous golden ratio
Thus:
![{\displaystyle \Phi \ =\ \lim _{n\to \infty }{\frac {F(n+1)}{F(n)}}\ =\ {\frac {1+{\sqrt {5}}}{2}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/288a56a5ee672482584e4c95e1a55c6370729f01)
Further reading