Sigma algebra: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Hendra I. Nurdin
mNo edit summary
imported>Hendra I. Nurdin
mNo edit summary
Line 1: Line 1:
{{subpages}}
{{subpages}}
In [[mathematics]],  a '''sigma algebra'''  is a [[mathematical structure|formal mathematical structure]] intended among other things to provide a rigid basis for [[measure theory]] and axiomatic [[probability theory]]. In essence it is a collection of subsets of an arbitrary set <math>\scriptstyle \Omega</math> that contains <math>\scriptstyle \Omega</math> itself and which is closed under the taking of complements (with respect to <math>\scriptstyle \Omega</math>) and countable unions. It is found to be just the right structure that allows construction of non-trivial and useful [[measure (mathematics)|measures]] on which a rich theory of [[Lebesgue integral|(Lebesque) integration]] can be developed which is much more general than [[Riemann integral|Riemann integration]].   
In [[mathematics]],  a '''sigma algebra'''  is a [[mathematical structure|formal mathematical structure]] intended among other things to provide a rigid basis for [[measure theory]] and axiomatic [[probability theory]]. In essence it is a collection of subsets of an arbitrary set <math>\scriptstyle \Omega</math> that contains <math>\scriptstyle \Omega</math> itself and which is closed under the taking of complements (with respect to <math>\scriptstyle \Omega</math>) and countable unions. It is found to be just the right structure that allows construction of non-trivial and useful [[measure (mathematics)|measures]] on which a rich theory of [[Lebesgue integral|(Lebesgue) integration]] can be developed which is much more general than [[Riemann integral|Riemann integration]].   


==Formal definition==
==Formal definition==

Revision as of 17:42, 20 December 2007

This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In mathematics, a sigma algebra is a formal mathematical structure intended among other things to provide a rigid basis for measure theory and axiomatic probability theory. In essence it is a collection of subsets of an arbitrary set that contains itself and which is closed under the taking of complements (with respect to ) and countable unions. It is found to be just the right structure that allows construction of non-trivial and useful measures on which a rich theory of (Lebesgue) integration can be developed which is much more general than Riemann integration.

Formal definition

Given a set , let be its power set, i.e. set of all subsets of . Then a subset FP (i.e., F is a collection of subset of ) is a sigma algebra if it satisfies all the following conditions or axioms:

  1. If then
  2. If for then

Examples

  • For any set S, the power set 2S itself is a σ algebra.
  • The set of all Borel subsets of the real line is a sigma-algebra.
  • Given the set = {Red, Yellow, Green}, the subset F = {{}, {Green}, {Red, Yellow}, {Red, Yellow, Green}} of is a σ algebra.

See also

Set

Set theory

Borel set

Measure theory

Measure

External links

  • Tutorial on sigma algebra at probability.net