Logarithm: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Fredrik Johansson
imported>Catherine Woodgold
(Adding internal links)
Line 1: Line 1:
A '''logarithm''' is a mathematical function which provides the number which would appear as the exponent in an expression.  For example, since <math>343 = 7^3</math>, then the base-7 logarithmic function of 343 is 3.  In general, if <math>a = b^c</math>, then <math>\log_b(a) = c</math>.
A '''logarithm''' is a mathematical [[elementary functions|function]] which provides the number which would appear as the exponent in an expression.  For example, since <math>343 = 7^3</math>, then the base-7 logarithmic function of 343 is 3.  In general, if <math>a = b^c</math>, then <math>\log_b(a) = c</math>.


Because we use a base-10 number system, it is often convenient to use 10 as the base of the logarithm.  Multiplying a number by 10 appends a zero to the numeral and adds 1 to the logarithm.  For example, <math>\log_{10}(43)</math> is approximately equal to 1.63347, and multiplying by 10, <math>\log_{10}(430)</math> is approximately 2.63347.
Because we use a base-10 number system, it is often convenient to use 10 as the base of the logarithm.  Multiplying a number by 10 appends a zero to the numeral and adds 1 to the logarithm.  For example, <math>\log_{10}(43)</math> is approximately equal to 1.63347, and multiplying by 10, <math>\log_{10}(430)</math> is approximately 2.63347.
Line 27: Line 27:
== Shape of the logarithm function ==
== Shape of the logarithm function ==


Consider the function <math>f(x) = \log_b(x)</math> where b is a positive real-number base of the logarithm.  Since any positive real number raised to the exponent zero is 1, the logarithm of 1 is zero.  To the right of 1 on the x-axis, the function <math>f</math> continually increases, but increases more and more slowly as <math>x</math> heads towards infinity.  Between 1 and 0, the logarithmic function has negative values, and asymptotically approaches minus infinity as <math>x</math> approaches zero.  For negative values of <math>x</math>, there is no defined value of <math>f(x)</math> within the real numbers &mdash; but using complex numbers a value can be found, as will be discussed further below.
Consider the function <math>f(x) = \log_b(x)</math> where b is a positive real-number base of the logarithm.  Since any positive real number raised to the exponent zero is 1, the logarithm of 1 is zero.  To the right of 1 on the x-axis, the function <math>f</math> continually increases, but increases more and more slowly as <math>x</math> heads towards infinity.  Between 1 and 0, the logarithmic function has negative values, and asymptotically approaches minus infinity as <math>x</math> approaches zero.  For negative values of <math>x</math>, there is no defined value of <math>f(x)</math> within the [[real number]]s &mdash; but using [[complex number]]s a value can be found, as will be discussed further below.


[[Image:Logarithms.png|460px|center|]]
[[Image:Logarithms.png|460px|center|]]

Revision as of 17:28, 28 April 2007

A logarithm is a mathematical function which provides the number which would appear as the exponent in an expression. For example, since Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 343 = 7^3} , then the base-7 logarithmic function of 343 is 3. In general, if Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a = b^c} , then Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \log_b(a) = c} .

Because we use a base-10 number system, it is often convenient to use 10 as the base of the logarithm. Multiplying a number by 10 appends a zero to the numeral and adds 1 to the logarithm. For example, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \log_{10}(43)} is approximately equal to 1.63347, and multiplying by 10, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \log_{10}(430)} is approximately 2.63347.

Mathematicians and physicists often find, however, that the transcendental number Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e} is more convenient as a base for a logarithmic function. The value of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e} is approximately equal to 2.718281828459045. The logarithmic function with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e} as a base is called the "natural logarithm" and is written Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ln(x)} .

The natural logarithm function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ln(x)} is the integral of the function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) = \frac{1}{x}} .

Extension of logarithms to fractional and negative values

Originally, exponents were natural numbers: it's easy to see the meaning of an expression such as Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 10^3 = 10 \times 10 \times 10} . Rules for adding and multiplying exponents were noticed, and to extend the idea to fractions and negative numbers it was assumed that the same rules would apply. To define a meaning for a fractional value such as Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 10^\frac{1}{2}} , consider that, using a rule for multiplying exponents,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (10^\frac{1}{2})^2 = 10^{\frac{1}{2}\times 2} = 10^1 = 10}

Therefore Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 10^\frac{1}{2}} must be Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{10}} and this then supplies a value for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \log_{10}(\sqrt{10}) = 0.5} . Values for many other numbers can be worked out similarly using cube roots and so on, and values for all real numbers can then be defined using limits.

To assign meaning to negative values of exponents, note the rule that

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b^x b^y = b^{x + y}} .

So, for example, to find the meaning of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 10^{-3}} , consider

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 10^{-3}\times10^3 = 10^{-3 + 3} = 10^0 = 1}

Therefore,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 10^{-3} = \frac{1}{10^3}}

and it then follows that

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \log_{10}(0.001) = -3} .

Thus, logarithms of numbers between 0 and 1 are negative numbers, and logarithms of numbers that fall between powers of the base are non-integer real numbers.

Shape of the logarithm function

Consider the function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) = \log_b(x)} where b is a positive real-number base of the logarithm. Since any positive real number raised to the exponent zero is 1, the logarithm of 1 is zero. To the right of 1 on the x-axis, the function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} continually increases, but increases more and more slowly as Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} heads towards infinity. Between 1 and 0, the logarithmic function has negative values, and asymptotically approaches minus infinity as Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} approaches zero. For negative values of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} , there is no defined value of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} within the real numbers — but using complex numbers a value can be found, as will be discussed further below.

Logarithms.png

Manipulating logarithms

Suppose we know the logarithm of a number using one base , and we want to find the logarithm using a different base  :

?

Suppose we know , and and we want to find . We need to look up the value of , and then by multiplying we can find the desired quantity:

This formula can be established using the definition of logarithms and the rule for multiplying exponents:

Therefore , the formula we wished to prove.

A useful formula for can be derived using the rule for adding exponents:

Therefore :

Complex numbers and logarithms

The exponential function of an imaginary number is given as

To find the logarithm of a complex number Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a + bi} , it's convenient to express the number in polar coordinates Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (r,\theta)} where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \scriptstyle r = \sqrt{a^2 + b^2}} and . (Intuitively, is the length of the line segment joining the number to the origin in the complex plane, and is the angle that line segment makes with the -axis.) The equivalence of the two notations is given by

Suppose we define such that . Using the formula for the exponential function above,

It can be seen from similarity with the above formula for polar coordinates that and . Therefore,

In this way, the logarithmic function can be extended to cover the entire complex plane except for the number zero, which has an undefined value — a singularity with the real part heading towards minus infinity and the imaginary part spinning wildly.