Internet: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Derek Hodges
imported>Howard C. Berkowitz
(Ummm...no. The Web is not, and was not, the Internet, and hypertext was invented in 1960.)
Line 57: Line 57:


===1980 to 1990===
===1980 to 1990===
The Internet of the 1980s did not resemble what we know as the Internet today. The concept of a [[web browser]] and [[web pages]] linked together via [[hypertext]] had not been invented yet. Piecemeal protocols were invented to facilitate chat, share files, store and retrieve information.
If one assumes the [[World Wide Web]] is the Internet, the Internet of the 1980s did not resemble what we know as the Internet today. [[Hypertext]] had been invented by [[Ted Nelson]] around 1960, and hyperdocuments could be transferred as files.  


{{r|Archie (search engine)}}
Nevertheless, the Internet routed approximately same packets as today.  The Internet of the time was not a public resource, and the research and academic users collaborated productively using electronic mail, file transfer, news, and other services.


{{r|File Transfer Protocol}}
Before [[AOL]] opened up [[USENET]] and other Internet resources in the late 80s, the Internet was first an environment for networking research, and second an environment to support other research and education. When anonymous access became common, the social environment changed radically. The environment was one of trust as well as collaboration; anonymous access was rare.


{{r|Gopher (protocol)}}
[[Malware]] such as [[worm]]s and [[virus]]es were rare; the first well-known breakin happened in 1986,<ref>{{citation
 
| author = Stoll, Cliff
{{r|Internet Relay Chat}}
| title = The Cuckoo's Egg: Tracking a Spy Through the Maze of Computer Espionage
 
| publisher = Pocket | year = 1989}}</ref> and the Morris worm hit in 1988.<ref>{{citation
{{r|Telnet (protocol)}}
| contribution =Security of the Internet
 
| title = The Froehlich/Kent Encyclopedia of Telecommunications vol. 15.
{{r|Veronica (search engine)}}
| publisher =Marcel Dekker
| year = 1997
| pages = 231-255
| url = http://www.cert.org/encyc_article/tocencyc.html}}</ref>


==Impact on Society==
==Impact on Society==

Revision as of 16:38, 14 July 2008

This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.
A map graphically displaying interconnections on the Internet (known as routes)

The Internet is a "network of networks" best known as the global network the World Wide Web is run on. It is common to call the World Wide Web "the Internet" but this is not accurate. The Web is the Internet's best known and front-facing service; however there are literally hundreds of different protocols, applications and services that run over the Internet.

The first functional networks between individual computers were created in the early 1970s. These networks, however, assumed the computers ran common software and protocols. Some of the networks were proprietary to computer vendors, such as IBM's Binary Synchronous Communications and the 1974 System Network Architecture, Xerox Network Services, Digital Equipment Corporation DECnet. X.25 was a nonproprietary standard, but used a different architecture than would the datagram networks such as the ARPANET and Internet.


Louis Pozin first introduced the idea of a generalized method of interconnecting networks of computers rather than individual computers, which he termed a catenet[1], but the model needed refinement. Such refinement took place under the sponsorship of the United States Department of Defense's Advanced Research Project Agency (ARPA), later renamed the Defense Advanced Research Projects Agency (DARPA). ARPA was formed to meet a number of perceived Cold War technology challenges, and was established in 1958 as the first U.S. response to the Soviet launching of Sputnik[2].

Among ARPA's areas of interest was the interconnection of networks, under the management and inspiration of J.C.R. Licklider 1915-1990[3], one of the pioneers of cooperative research. Vint Cerf extended Pouzin's catenet model as the basis for what was to become the ARPANET:

The U.S.

DARPA research project on this subject has adopted the term to mean roughly "the collection of packet networks which are connected together." This is, however, not a sufficiently explicit definition to determine, for instance, whether a new network is in conformance with the rules for network interconnection which make the catenet function as confederation

of co-operating networks.[4]

Cerf extended the concept of catenet to be usable in a specific research network, the ARPANET. ARPANET was the first large-scale "network of networks" using common mechanisms to interconnect disparate networks. It was funded through ARPA, and access was limited to selected universities, research organizations, and government agencies. Contrary to widespread legend, it was never intended to be a military network survivable under nuclear attack, although other, not necessarily packet-switching, networks, were intended for warfighting. starting as early as the 1963 SACCS, specific to the Strategic Air Command.[5] Other warfighting networks included the even earlier Minimum Essential Emergency Command Network (MEECN), which was made up of multiple networks that were interconnected only through human intervention.[6] Even today, the military warfighting networks, such as NIPRNET, SIPRNET, JWICS and Warfighter Information Network are separate from the Internet.

Many educational institutions and corporations began joining the network, and in 1983 all nodes on the ARPANET changed over at once to Internet Protocol version 4 (IPv4), which is still in use on the internet today. While this is often referred to as "TCP/IP", they are two distinct protocols: Transmission Control Protocol (TCP), and IPv4. In a literal sense the written term TCP/IP can be read aloud as "TCP over IP" and would be a correct description.

There were several intermediate steps between the ARPANET, to which access was strictly controlled, and today's ubiquitous Internet. See History

While IPv4 will be present indefinitely, it is limited in its capability for modern functions, and an evolution is in process to Internet Protocol version 6 (IPv6). Internally, the Internet is divided into Autonomous Systems, which exchange information about the destinations they can reach, using the Border Gateway Protocol (BGP).

History

1950s to 1970s

1975 to 1980

  • Email was invented, then shortly thereafter Spam was invented. Ugh.

1980 to 1990

If one assumes the World Wide Web is the Internet, the Internet of the 1980s did not resemble what we know as the Internet today. Hypertext had been invented by Ted Nelson around 1960, and hyperdocuments could be transferred as files.

Nevertheless, the Internet routed approximately same packets as today. The Internet of the time was not a public resource, and the research and academic users collaborated productively using electronic mail, file transfer, news, and other services.

Before AOL opened up USENET and other Internet resources in the late 80s, the Internet was first an environment for networking research, and second an environment to support other research and education. When anonymous access became common, the social environment changed radically. The environment was one of trust as well as collaboration; anonymous access was rare.

Malware such as worms and viruses were rare; the first well-known breakin happened in 1986,[7] and the Morris worm hit in 1988.[8]

Impact on Society

References

  1. Pouzin, L. (May 1974), A Proposal for Interconnecting Packet Switching Networks, Bronel University, at 1023-36
  2. Defense Advanced Research Projects Agency. United States government (2003). Retrieved on 2007-05-12.
  3. Internet Pioneers: J.C.R. Licklider
  4. Cerf, Vint (July 1978), The Catenet Model for Internetworking, IEN 48
  5. Strategic Automated Command Control System
  6. Williams, Carla (17 November 2005), Minot completes final MEECN modifications
  7. Stoll, Cliff (1989), The Cuckoo's Egg: Tracking a Spy Through the Maze of Computer Espionage, Pocket
  8. , Security of the Internet, The Froehlich/Kent Encyclopedia of Telecommunications vol. 15., Marcel Dekker, 1997, at 231-255