Set (mathematics): Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>John R. Brews
(absorption and distributive laws)
imported>John R. Brews
(Mappings & functions)
Line 53: Line 53:
and the ''distributive law'':
and the ''distributive law'':
:<math>A \ \cup \ \left( \  B \ \cap \  C \ \right)\  = \ \left( \ A \ \cup \ B \ \right)\ \cap \ \left(  A\ \cup C \ \right) ; \  \ A \ \cap \ \left( \  B \ \cup \  C \ \right)\  = \ \left( \ A \ \cap \ B \ \right)\ \cup \ \left( \ A\ \cap \ C \  \right) \ . </math>
:<math>A \ \cup \ \left( \  B \ \cap \  C \ \right)\  = \ \left( \ A \ \cup \ B \ \right)\ \cap \ \left(  A\ \cup C \ \right) ; \  \ A \ \cap \ \left( \  B \ \cup \  C \ \right)\  = \ \left( \ A \ \cap \ B \ \right)\ \cup \ \left( \ A\ \cap \ C \  \right) \ . </math>
===Mappings or functions===
Given two sets ''A'' and ''B'', a '''mapping''' (or ''map'') also called a '''function''' or '''transformation''' from ''A'' into ''B'', is a rule associating each element of ''A'' to an element of ''B''. Common notations for a mapping ''f'' are:
:<math> f:A\ \rightarrow\ B \ \text{or}\ A\ \xrightarrow{f} \ B \ , </math>
where the element ''a''&isin;''A'' is associated by mapping ''f'' to the element ''b''&isin;''B'', that is:
:<math>b = f(a) \ \ \text{or} \ f:a \rightarrow b, </math>
and ''b'' is called the ''image'' of ''a'' in ''B'' under ''f''. The set ''A'' is called the ''domain'' of the mapping ''f'', and the subset of ''B'' consisting of all the image points is the ''range'' (or ''codomain'') of ''f'', denoted as the subset of ''B'' given by:
:<math> f(A) = \{ f(a)|a \in A \}  \ . </math>
Two functions ''f'' and ''g'' are equal, ''f = g'', if they have the same domain ''A'' and ''f(a)'' = ''g(a)'' for all ''a''&isin;''A''.
A mapping ''f:A&rarr;B'' is from ''A'' ''onto'' ''B'' if ''f(A) = B''. The mapping is ''one-to-one'' (or ''injective'') if ''a<sub>1</sub> ≠ a<sub>2</sub>'' means ''f(a<sub>1</sub>) ≠ f(a<sub>2</sub>)'' for all ''a<sub>1</sub>,a<sub>2</sub> &isin; A''.


==Some special sets==
==Some special sets==

Revision as of 07:42, 10 May 2011

This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

Informally, a set is thought of as any collection of distinct elements. Sets are axiomatized and investigated in general by a branch of mathematics known as set theory.

Introduction

The basic property of sets is that they are solely determined by the elements they contain (this is called extensionality). Thus, we can identify sets by listing their elements. For instance, we can talk about the set that has as its elements the numbers 1, 2 and 3. This set is denoted {1, 2, 3}.

A consequence of this basic property is that a set cannot contain an element twice. The set {1, 2, 2, 3} contains the elements 1, 2 and 3 and is thus the same as the set {1, 2, 3}. This is the difference between sets and multisets; considered as multisets, {1, 2, 2, 3} and {1, 2, 3} are different.

For the same reason, the order in which the elements are listed does not matter. The sets {1, 2, 3} and {3, 2, 1} have the same elements and thus these two sets are equal. However, there are many contexts in which we want to consider structures that have elements in a certain order and these elements may be the same. Such a structure is called a tuple or a sequence. The tuple containing the elements 1, 2 and 3 (in that order) is different from the tuple containing the elements 3, 2 and 1. These tuples are denotes (1, 2, 3) and (3, 2, 1) respectively, with round brackets (or angle brackets) instead of curly brackets to emphasize the difference between tuples and sets.

Despite the intuitive definition, a set is usually not defined formally in terms of other mathematical objects; rather it is defined by the laws (called axioms) that is satisfies. For instance, one commonly requires that no set may be an element of itself. Because sets are defined by themselves, they are fundamental structures in mathematics and logic. Mathematicians have found ways to define many mathematical objects, such as the real numbers, in terms of sets.

The number of elements that a set contains does not have to be finite. Sets that contain a finite number of elements are called finite sets. Sets that contain an infinite number of elements are called infinite sets. The number of elements that a finite set contains is called that set's cardinality. The concept of cardinality can also be applied to infinite sets, though the concept is less intuitive, and relies upon bijections between sets.

Notation

Some sets can be denoted by a list of objects separated with commas, enclosed with curly brackets. As mentioned before, {1, 2, 3} is the set of the numbers 1, 2, and 3. We say that 1, 2, and 3 are its members.

There are many other ways to write out sets. For example,

A = {x | 1 < x < 10, x is a natural number}

can be read as follows: A is the set of all x, where x is between 1 and 10, and x is a natural number. A could also be written as:

A = {2, 3, 4, 5, 6, 7, 8, 9}

Membership in a set is expressed with the ∈ symbol. To say that the set A contains the 2 as an element (or that 2 is an element of A), we write

2 ∈ A

The cardinality of a set is expressed by placing bars around the name of the set. For example, one would express the cardinality of the above set as such:

|A| = 8

Subsets

A set A is a subset of another set B if each element of A is an element of B. One says "A is contained in B" and writes AB, alternatively that "B contains A" or BA. If AB and BA, then A = B. Set A is a proper subset of set B if AB and AB.

The difference of two sets A and B, written AB, is the set with elements of A that are not elements of B. It also is called the relative complement of B in set A.

Unions and intersections

The union or sum of two sets A and B, written AB, is the set with elements that appear in A or B or both. The intersection or product of A and B, written AB is the set with elements that appear in both set A and in set B. The union and the intersection are commutative, that is:

and associative:

Two sets A and B are said to be disjoint if AB = ∅. Also of interest are the absorption law:

and the distributive law:

Mappings or functions

Given two sets A and B, a mapping (or map) also called a function or transformation from A into B, is a rule associating each element of A to an element of B. Common notations for a mapping f are:

where the element aA is associated by mapping f to the element bB, that is:

and b is called the image of a in B under f. The set A is called the domain of the mapping f, and the subset of B consisting of all the image points is the range (or codomain) of f, denoted as the subset of B given by:

Two functions f and g are equal, f = g, if they have the same domain A and f(a) = g(a) for all aA.

A mapping f:A→B is from A onto B if f(A) = B. The mapping is one-to-one (or injective) if a1 ≠ a2 means f(a1) ≠ f(a2) for all a1,a2 ∈ A.

Some special sets

Some sets that are ubiquitous in the mathematical literature have special symbols:

Among other such well known sets are the fibonacci numbers, even numbers, odd numbers, quaternions, octonions and the Hamiltonian integers.

Some examples of sets

  • The set consisting of all tuples (a,b), where a is any real number and ditto for b. This set is known as x or 2.
  • The three element set {Red, Yellow, Green}.
  • The set consisting of the two elements Brake, Accelerate.
  • The set consisting of all tuples (a,b) where a is any element in the set {Red, Yellow, Green} and b is any element in the set {Brake, Accelerate}.
  • The set of all functions from the set {Red, Yellow, Green} to the set {Brake, Accelerate}.

References