Geotechnical engineering: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Anthony Argyriou
(Create using some content from the WP article)
 
imported>Anthony Argyriou
(some cleanup)
Line 13: Line 13:
== Geotechnical investigation ==
== Geotechnical investigation ==
{{main|Geotechnical investigation}}
{{main|Geotechnical investigation}}
Geotechnical engineers perform '''geotechnical investigations''' to obtain information on the physical properties of soil and rock underlying (and sometimes adjacent to) a site to design earthworks and foundations for proposed structures and for repair of distress to earthworks and structures caused by subsurface conditions. A geotechnical investigation will include surface exploration and subsurface exploration of a site. Sometimes, [[Exploration geophysics|geophysical methods]] are used to obtain data about sites. Subsurface exploration usually involves [[#Soil sampling|soil sampling]] and [[#Laboratory tests|laboratory testing]] of the soil samples retrieved.
Geotechnical engineers perform '''geotechnical investigations''' to obtain information on the physical properties of soil and rock underlying (and sometimes adjacent to) a site to design earthworks and foundations for proposed structures and for repair of distress to earthworks and structures caused by subsurface conditions. A geotechnical investigation will include surface exploration and subsurface exploration of a site. Sometimes, [[Exploration geophysics|geophysical methods]] are used to obtain data about sites. Subsurface exploration usually involves [[#Soil sampling|soil sampling]] and [[#Laboratory tests|laboratory testing]] of the soil samples retrieved.


Line 23: Line 22:


[[Exploration geophysics|Geophysical exploration]] is also sometimes used; geophysical techniques used for subsurface exploration include measurement of [[seismic waves]] (pressure, shear, and [[Rayleigh waves]]), using surface-wave methods and/or downhole methods, and electromagnetic surveys (magnetometer, resistivity, and [[ground-penetrating radar]]).
[[Exploration geophysics|Geophysical exploration]] is also sometimes used; geophysical techniques used for subsurface exploration include measurement of [[seismic waves]] (pressure, shear, and [[Rayleigh waves]]), using surface-wave methods and/or downhole methods, and electromagnetic surveys (magnetometer, resistivity, and [[ground-penetrating radar]]).


== Foundations ==
== Foundations ==
Line 34: Line 32:


In areas of shallow bedrock, most foundations may bear directly on bedrock; in other areas, the soil may provide sufficient strength for the support of structures. In areas of deeper bedrock with soft overlying soils, deep foundations are used to support structures directly on the bedrock; in areas where bedrock is not economically available, stiff "bearing layers" are used to support deep foundations instead.
In areas of shallow bedrock, most foundations may bear directly on bedrock; in other areas, the soil may provide sufficient strength for the support of structures. In areas of deeper bedrock with soft overlying soils, deep foundations are used to support structures directly on the bedrock; in areas where bedrock is not economically available, stiff "bearing layers" are used to support deep foundations instead.


== Lateral earth support structures ==
== Lateral earth support structures ==
{{main|Retaining wall}}
{{main|Retaining wall}}
A retaining wall is a structure that holds back earth. Retaining walls stabilize soil and rock from downslope movement or erosion and provide support for vertical or near-vertical grade changes. Cofferdams and bulkheads, structures to hold back water, are sometimes also considered retaining walls.  
A retaining wall is a structure that holds back earth at a slope steeper than the soil could stand on its own over the long term. Retaining walls stabilize soil and rock from downslope movement or erosion and provide support for vertical or near-vertical grade changes. Cofferdams and bulkheads, structures to hold back water, are sometimes also considered retaining walls.  


The primary geotechnical concern in design and installation of retaining walls is that the retained material is attempting to move forward and downslope due to gravity. This creates [[lateral earth pressure theory|soil pressure]] behind the wall, which can be analysed based on the angle of internal friction (φ) and the cohesive strength (c) of the material and the amount of allowable movement of the wall. This pressure is smallest at the top and increases toward the bottom in a manner similar to hydraulic pressure, and tends to push the wall forward and overturn it.  [[Groundwater]] behind the wall that is not dissipated by a drainage system causes an additional horizontal hydraulic pressure on the wall.
The primary geotechnical concern in design and installation of retaining walls is that the retained material is attempting to move forward and downslope due to gravity. This creates [[lateral earth pressure theory|soil pressure]] behind the wall, which can be analysed based on the angle of internal friction (φ) and the cohesive strength (c) of the material and the amount of allowable movement of the wall. This pressure is smallest at the top and increases toward the bottom in a manner similar to hydraulic pressure, and tends to push the wall forward and overturn it.  [[Groundwater]] behind the wall that is not dissipated by a drainage system causes an additional horizontal hydraulic pressure on the wall.
Line 44: Line 41:
==Slope stability==
==Slope stability==
{{main|Slope stability}}
{{main|Slope stability}}
Slope stability is the analysis of soil covered slopes and its potential to undergo [[mass wasting|movement]]. Stability is determined by the balance of [[shear stress]] and [[shear strength]]. A previously stable slope may be initially affected by preparatory factors, making the slope conditionally unstable. Triggering factors of a [[slope failure]] can be climatic events can then make a slope actively unstable, leading to mass movements. Mass movements can be caused by increases in shear stress, such as loading, lateral pressure, and transient forces. Alternatively, shear strength may be decreased by weathering, changes in pore water pressure, and organic material.
Slope stability is the analysis of soil covered slopes and its potential to undergo [[mass wasting|movement]]. Stability is determined by the balance of [[shear stress]] and [[shear strength]]. A previously stable slope may be initially affected by preparatory factors, making the slope conditionally unstable. Triggering factors of a [[slope failure]] can be climatic events can then make a slope actively unstable, leading to mass movements. Mass movements can be caused by increases in shear stress, such as loading, lateral pressure, and transient forces. Alternatively, shear strength may be decreased by weathering, changes in pore water pressure, and organic material.

Revision as of 18:58, 27 February 2007

Geotechnical engineering is the branch of civil engineering concerned with the engineering behavior of earth materials. Geotechnical engineering includes investigating existing subsurface conditions and materials; assessing risks posed by site conditions; designing earthworks and structure foundations; and monitoring site conditions, earthwork and foundation construction.

A typical geotechnical engineering project begins with a site investigation of soil and bedrock on and below an area of interest to determine their engineering properties including how they will interact with, on or in a proposed construction. Site investigations are needed to gain an understanding of the area in or on which the engineering will take place. Investigations can include the assessment of the risk to humans, property and the environment from natural hazards such as earthquakes, landslides, sinkholes, soil liquefaction, debris flows and rock falls.

A geotechnical engineer then determines and designs the type of foundations, earthworks, and/or pavement subgrades required for the intended man-made structures to be built. Foundations are designed and constructed for structures of various sizes such as high-rise buildings, bridges, medium to large commercial buildings, and smaller structures where the soil conditions do not allow code-based design.

Foundations built for above-ground structures include shallow and deep foundations. Retaining structures include earth-filled dams and retaining walls. Earthworks include embankments, tunnels, levees, channels, reservoirs, deposition of hazardous waste and sanitary landfills.

Geotechnical engineering is also related to coastal and ocean engineering. Coastal engineering can involve the design and construction of wharves, marinas, and jetties. Ocean engineering can involve foundation and anchor systems for offshore structures such as oil platforms.

The fields of geotechnical engineering and engineering geology are closely related, and intersect in some areas. However, the field of geotechnical engineering is a specialty of engineering, where the field of engineering geology is a specialty of geology.

Geotechnical investigation

For more information, see: Geotechnical investigation.

Geotechnical engineers perform geotechnical investigations to obtain information on the physical properties of soil and rock underlying (and sometimes adjacent to) a site to design earthworks and foundations for proposed structures and for repair of distress to earthworks and structures caused by subsurface conditions. A geotechnical investigation will include surface exploration and subsurface exploration of a site. Sometimes, geophysical methods are used to obtain data about sites. Subsurface exploration usually involves soil sampling and laboratory testing of the soil samples retrieved.

Surface exploration can include Geologic mapping, geophysical methods, and Photogrammetry, or it can be as simple as an engineer walking around on the site to observe the physical conditions at the site.

To obtain information about the soil conditions below the surface, some form of subsurface exploration is required. Methods of observing the soils below the surface, obtaining samples, and determining physical properties of the soils and rock include test pits, trenching (particularly for locating faults and slide planes), borings, and cone penetration tests.

Borings come in two main varieties, large-diameter and small-diameter. Large-diameter borings are rarely used due to safety concerns and expense, but are sometimes used to allow a geologist or engineer to visually and manually examine the soil and rock stratigraphy in-situ. Small-diameter borings are frequently used to allow a geologist or engineer examine soil or rock cuttings from the drilling operation, to retrieve soil samples at depth, and to perform in-place soil tests. A Cone Penetration Test (CPT) is typically performed using an instrumented probe with a conical tip, pushed into the soil hydraulically. A basic CPT instrument reports tip resistance and shear resistance along the cylindrical barrel. CPT data has been correlated to soil properties. Sometimes instruments other than the basic CPT probe are used.

Geophysical exploration is also sometimes used; geophysical techniques used for subsurface exploration include measurement of seismic waves (pressure, shear, and Rayleigh waves), using surface-wave methods and/or downhole methods, and electromagnetic surveys (magnetometer, resistivity, and ground-penetrating radar).

Foundations

For more information, see: Foundation.

A building's foundation transmits loads from buildings and other structures to the earth. Geotechnical engineers design foundations based on the load characteristics of the structure and the properties of the soils and/or bedrock at the site.

The primary considerations for foundation support are bearing capacity, settlement, and ground movement beneath the foundations. Bearing capacity is the ability of the site soils to support the loads imposed by buildings or structures. Settlement occurs under all foundations in all soil conditions, though lightly loaded structures or rock sites may experience negligible settlements. For heavier structures or softer sites, both overall settlement relative to unbuilt areas or neighboring buildings, and differential settlement under a single structure, can be concerns. Of particular concern is settlement which occurs over time, as immediate settlement can usually be compensated for during construction. Ground movement beneath a structure's foundations can occur due to shrinkage or swell of expansive soils due to climactic changes, frost expansion of soil, melting of permafrost, slope instability, or other causes. All these factors must be considered during design of foundations.

Many building codes specify basic foundation design parameters for simple conditions, frequently varying by jurisdiction, but such design techniques are normally limited to certain types of construction and certain types of sites, and are frequently very conservative.

In areas of shallow bedrock, most foundations may bear directly on bedrock; in other areas, the soil may provide sufficient strength for the support of structures. In areas of deeper bedrock with soft overlying soils, deep foundations are used to support structures directly on the bedrock; in areas where bedrock is not economically available, stiff "bearing layers" are used to support deep foundations instead.

Lateral earth support structures

For more information, see: Retaining wall.

A retaining wall is a structure that holds back earth at a slope steeper than the soil could stand on its own over the long term. Retaining walls stabilize soil and rock from downslope movement or erosion and provide support for vertical or near-vertical grade changes. Cofferdams and bulkheads, structures to hold back water, are sometimes also considered retaining walls.

The primary geotechnical concern in design and installation of retaining walls is that the retained material is attempting to move forward and downslope due to gravity. This creates soil pressure behind the wall, which can be analysed based on the angle of internal friction (φ) and the cohesive strength (c) of the material and the amount of allowable movement of the wall. This pressure is smallest at the top and increases toward the bottom in a manner similar to hydraulic pressure, and tends to push the wall forward and overturn it. Groundwater behind the wall that is not dissipated by a drainage system causes an additional horizontal hydraulic pressure on the wall.

Slope stability

For more information, see: Slope stability.

Slope stability is the analysis of soil covered slopes and its potential to undergo movement. Stability is determined by the balance of shear stress and shear strength. A previously stable slope may be initially affected by preparatory factors, making the slope conditionally unstable. Triggering factors of a slope failure can be climatic events can then make a slope actively unstable, leading to mass movements. Mass movements can be caused by increases in shear stress, such as loading, lateral pressure, and transient forces. Alternatively, shear strength may be decreased by weathering, changes in pore water pressure, and organic material.