CZ:Featured article/Current: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Chunbum Park
mNo edit summary
imported>John Stephenson
(template)
 
(226 intermediate revisions by 8 users not shown)
Line 1: Line 1:
{{Image|Apollo 11 image 2.jpg|right|300px|The first manned landing on the moon was successfully accomplished by the Apollo 11 mission on July 20, 1969. Astronaut Neil Armstrong took this photograph of fellow astronaut Edwin ("Buzz") Aldrin walking on the Moon's surface during lunar landing.}}  
{{:{{FeaturedArticleTitle}}}}
 
<small>
The '''[[Apollo program]]''' was a series of human spaceflight missions undertaken by the United States, during the years 1961–1974, using the Apollo spacecraft and Saturn space launch vehicle. It was conducted by the National Aeronautics and Space Administration (NASA) and was devoted to the goal, expressed in a 1961 address to the U.S. Congress by U.S. President John F. Kennedy, of "... landing a man on the Moon and returning him safely to the Earth ..." within the decade of the 1960s. That goal was successfully achieved by the Apollo 11 mission in July 1969.
==Footnotes==
 
{{reflist|2}}
The program continued until 1975 with five subsequent Apollo missions which also landed astronauts on the Moon, the last in December 1972. In the six successful Apollo spaceflights, twelve men walked on the Moon. As of 2011, these are the only times that humans have landed on another celestial body.
</small>
 
Equipment that was originally produced for the Apollo program was used for the later Skylab program during 1973–1974 and the joint U.S.−Soviet mission (Apollo−Soyuz Test Project) in 1975. Therefore, those subsequent programs are thus often considered to be part of the Apollo program.
 
Despite the many successes, there were two major failures, the first of which resulted in the deaths of three astronauts, Virgil "Gus" Grissom, Ed White and Roger Chaffee, in the Apollo 1 launchpad fire. The second was an explosion on Apollo 13, in whose aftermath the deaths of three more astronauts were averted by the efforts of flight controllers, project engineers, and backup crew members.
 
The Apollo program was named after the Greek god of the Sun.
 
==Background==
 
The Apollo program was originally conceived early in 1960, during the administration of U.S. President Eisenhower, as a follow-up to America's Mercury program. While the Mercury capsule could only support one astronaut on a limited Earth orbital mission, the Apollo spacecraft was intended to be able to carry three astronauts on a circumlunar flight and perhaps even on a lunar landing. The program was named after the Greek god of the Sun by NASA manager Abe Silverstein, who later said that "I was naming the spacecraft like I'd name my baby." While NASA went ahead with planning for Apollo, funding for the program was far from certain, particularly given Eisenhower's equivocal attitude to manned spaceflight.
 
[[Apollo program|...]]

Latest revision as of 10:19, 11 September 2020

After decades of failure to slow the rising global consumption of coal, oil and gas,[1] many countries have proceeded as of 2024 to reconsider nuclear power in order to lower the demand for fossil fuels.[2] Wind and solar power alone, without large-scale storage for these intermittent sources, are unlikely to meet the world's needs for reliable energy.[3][4][5] See Figures 1 and 2 on the magnitude of the world energy challenge.

Nuclear power plants that use nuclear reactors to create electricity could provide the abundant, zero-carbon, dispatchable[6] energy needed for a low-carbon future, but not by simply building more of what we already have. New innovative designs for nuclear reactors are needed to avoid the problems of the past.

(CC) Image: Geoff Russell
Fig.1 Electricity consumption may soon double, mostly from coal-fired power plants in the developing world.[7]

Issues Confronting the Nuclear Industry

New reactor designers have sought to address issues that have prevented the acceptance of nuclear power, including safety, waste management, weapons proliferation, and cost. This article will summarize the questions that have been raised and the criteria that have been established for evaluating these designs. Answers to these questions will be provided by the designers of these reactors in the articles on their designs. Further debate will be provided in the Discussion and the Debate Guide pages of those articles.

Footnotes

  1. Global Energy Growth by Our World In Data
  2. Public figures who have reconsidered their stance on nuclear power are listed on the External Links tab of this article.
  3. Pumped storage is currently the most economical way to store electricity, but it requires a large reservoir on a nearby hill or in an abandoned mine. Li-ion battery systems at $500 per KWh are not practical for utility-scale storage. See Energy Storage for a summary of other alternatives.
  4. Utilities that include wind and solar power in their grid must have non-intermittent generating capacity (typically fossil fuels) to handle maximum demand for several days. They can save on fuel, but the cost of the plant is the same with or without intermittent sources.
  5. Mark Jacobson believes that long-distance transmission lines can provide an alternative to costly storage. See the bibliography for more on this proposal and the critique by Christopher Clack.
  6. "Load following" is the term used by utilities, and is important when there is a lot of wind and solar on the grid. Some reactors are not able to do this.
  7. Fig.1.3 in Devanney "Why Nuclear Power has been a Flop"