Carbon nanotube: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Eiad Jandali
(New page: {{subpages}} <!-- Please ignore (but don't delete) any formatting that you are not familiar with. Others will probably chime in to help you set things up. --> Carbon nanotubes (CNTs) are...)
 
mNo edit summary
 
(8 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{subpages}}
{{subpages}}
<!-- Please ignore (but don't delete) any formatting that you are not familiar with. Others will probably chime in to help you set things up. -->
'''Carbon nanotubes''' are tubular [[carbon]] molecules that have properties that make them potentially useful in [[nanotechnology]]. They exhibit unusual strength and unique [[electricity|electrical]] properties, and are extremely efficient conductors of [[heat]].


A nanotube is a structure similar to a [[fullerene]], only the carbon [[atom]]s are rolled into a [[cylinder]] instead of a [[sphere]]; each end is capped with half a fullerene molecule. They are only one nanometre wide (on the order of one ten-thousandth the width of a human hair), and their length can be millions of times greater than their width.


Carbon nanotubes (CNTs) are cylindrically shaped sheets of [carbon], typically existing as the allotrope graphite. Carbon nanotubes are generally divided into two categories, single-walled and multi-walled, sue to their differing properties. Due to their unique molecular structuring, CNTs exhibit unique properties in material sciences and electronics that is the topic of recent on-going research. [2]
In 1889, two British men received a US [[patent]] on producing 'hair-like carbon filaments' from [[methane]]. In the 1960s and 1970s, groups at the [[National Carbon]] company in [[Parma]], [[Ohio (U.S. state)|Ohio]], [[United States of America]] and the [[University of Canterbury]] in [[Christchurch, New Zealand|Christchurch]], [[New Zealand]], produced and identified the tubes.
Carbon nanotubes are currently being explored as an emerging technology in numerous fields such as electronics, optics, materials uses, and medicine. In addition to research regarding applications is the research being done to improve production of carbon nanotubes to include more precision and higher volumes of productions on a large scale. Development of “ultra-long” carbon nanotubes with extremely high length-to-diameter ratios is being researched due to their potential to greatly increase the applications of CNTs across their many fields of use.


==References==
Nanotubes were rediscovered in 1991 by [[Sumio Iijima]]. It has since been discovered how nanotubes can be produced in large quantities. The price of nanotubes are still in the US$100 [[dollar]] per [[gram]] range which prohibits any large scale use of them; when large-scale nanotube production is implemented, however, it is assumed that prices would be far lower, to around five cents per gram or so.
<references/>


<!--Please ignore the following lines if you are not familiar with the usage of subpages at Citizendium.-->
Nanotubes can be opened and filled with materials such as [[biological molecule|biological molecules]], raising the possibility of applications in [[biotechnology]]. They can be used to dissipate heat from tiny computer chips. The strength and flexibility of carbon nanotubes makes them of potential use in controlling other nanoscale structures, which suggests they will have an important role in nanotechnology engineering. If nanotube composites can be fabricated that exhibit macroscale strength properties approaching theoretical models of individual nanotubes, they will make possible a huge variety of technical innovations, notably the [[space elevator]].


[[Category:CZ Live]]
One use for nanotubes that has already been developed is as extremely fine electron guns, which could be used as miniature [[cathode ray tube]]s in thin high-brightness low-energy low-weight displays. In this type of display, a group of many tiny CRTs would provide the [[electron]]s to hit the [[phosphor]]s of one [[pixel]], instead of having one giant CRT whose electrons are aimed using electric and [[magnetic field]]s.  These displays are known as [[Field Emission Display]]s (FEDs). A nanotube formed by joining nanotubes of two different diameters end to end can act as a [[diode]], suggesting the possibility of constructing electronic computer circuits entirely out of nanotubes. Nanotubes have been shown to be [[superconductivity|superconducting]] at low temperatures.[[Category:Suggestion Bot Tag]]
[[Category:Articles without metadata]]
[[Category:Stub Articles]]
[[Category:Needs Workgroup]]

Latest revision as of 06:00, 25 July 2024

This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

Carbon nanotubes are tubular carbon molecules that have properties that make them potentially useful in nanotechnology. They exhibit unusual strength and unique electrical properties, and are extremely efficient conductors of heat.

A nanotube is a structure similar to a fullerene, only the carbon atoms are rolled into a cylinder instead of a sphere; each end is capped with half a fullerene molecule. They are only one nanometre wide (on the order of one ten-thousandth the width of a human hair), and their length can be millions of times greater than their width.

In 1889, two British men received a US patent on producing 'hair-like carbon filaments' from methane. In the 1960s and 1970s, groups at the National Carbon company in Parma, Ohio, United States of America and the University of Canterbury in Christchurch, New Zealand, produced and identified the tubes.

Nanotubes were rediscovered in 1991 by Sumio Iijima. It has since been discovered how nanotubes can be produced in large quantities. The price of nanotubes are still in the US$100 dollar per gram range which prohibits any large scale use of them; when large-scale nanotube production is implemented, however, it is assumed that prices would be far lower, to around five cents per gram or so.

Nanotubes can be opened and filled with materials such as biological molecules, raising the possibility of applications in biotechnology. They can be used to dissipate heat from tiny computer chips. The strength and flexibility of carbon nanotubes makes them of potential use in controlling other nanoscale structures, which suggests they will have an important role in nanotechnology engineering. If nanotube composites can be fabricated that exhibit macroscale strength properties approaching theoretical models of individual nanotubes, they will make possible a huge variety of technical innovations, notably the space elevator.

One use for nanotubes that has already been developed is as extremely fine electron guns, which could be used as miniature cathode ray tubes in thin high-brightness low-energy low-weight displays. In this type of display, a group of many tiny CRTs would provide the electrons to hit the phosphors of one pixel, instead of having one giant CRT whose electrons are aimed using electric and magnetic fields. These displays are known as Field Emission Displays (FEDs). A nanotube formed by joining nanotubes of two different diameters end to end can act as a diode, suggesting the possibility of constructing electronic computer circuits entirely out of nanotubes. Nanotubes have been shown to be superconducting at low temperatures.