User:John R. Brews/Coriolis force: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>John R. Brews
No edit summary
No edit summary
 
(3 intermediate revisions by one other user not shown)
Line 1: Line 1:
{{subpages}}
{{AccountNotLive}}
{{Image|Standard Model.PNG|right|200px|The fundamental particles and messenger quanta of the Standard Model.}}
===Quarks===
{{TOC|right}}
The '''Standard Model''' of particle physics is the mathematical theory that describes the [[weak force|weak]], [[Maxwell's equations|electromagnetic]] and [[Strong force|strong]] interactions between [[lepton]]s and [[quark]]s, the basic particles of particle physics. This model is very strongly supported by experimental observations, and is considered to be a major achievement (perhaps the most outstanding achievement) of theoretical physics. It does not, however, treat the [[Gravitation|gravitational force]], inclusion of which remains an elusive goal of the ultimate "theory of everything". The Standard Model is accordingly not consistent with [[general relativity]]. The theory is consistent with [[special relativity]].


The model is described only qualitatively in this article, and neither mathematical details nor experimental phenomenology are provided. The objective here is only an introduction to the basic terminology for particles in the Standard Model and their interactions.
The quarks that may engage one another in reactions are determined by the [[Cabbibo-Kobayashi-Maskawa matrix]]:[http://books.google.com/books?id=f89yg8a1t-EC&pg=PA23&dq=Cabibbo+angle&hl=en&ei=XYZvToTqN7PZiAKM55juBg&sa=X&oi=book_result&ct=result&resnum=2&ved=0CDIQ6AEwATgK#v=onepage&q=Cabibbo%20angle&f=false Morii]
 
:<math>\begin{pmatrix}
==Particles and interactions==
d'\\
Various decay reactions and high-energy interactions between the multitudes of [[sub-atomic particles]] (initially just neutrons, protons, electrons, and photons, but extended to observations of pions, kaons, J/&psi;'s or ''jay-psi''’s, upsilons, and so forth)<ref name=Silva/> are well known experimentally, and transcend the Standard Model. The Standard Model explains these observations through the introduction of fundamental particles: spin 1/2 [[fermion]]s of two ''types'': [[lepton]]s and [[quark]]s and the forces between them. Fundamental particle interactions are viewed as ''exchange forces'', which is to say the trading back and forth of ''force carriers'', which are different kinds of particle that represent [[quantum theory|quanta]] of the underlying force fields. So, for example, the quanta of the electromagnetic field are ''[[photon]]s''. The strength of an electromagnetic field is dictated by the number of photons that make it up,  and the exchange of photons between particles with [[electric charge]] is the mechanism underlying the field's ability to exert an electromagnetic force upon these bodies.
s'\\
b'\\
===Leptons===
\end{pmatrix} = \begin{pmatrix}
[[Lepton]]s are one ''type'' of fundamental particle. They have spin 1/2 and are ''not'' subject to the strong force. The known leptons are said to be of three ''families'' or ''generations'' (labeled in the table as ''1, 2, 3'') and of six ''flavors'', a generic term for the particle names. They are listed in the table below. Their antiparticles also are leptons with opposite [[electric charge]] ''Q'' and opposite Lepton number ''L<sub>e,&mu;,&tau;</sub>''. For example, the anti-electron or positron has a positive electric charge and a negative electron lepton number ''L<sub>e</sub>''=−1.
U_{ud}&U_{us}&U_{ub}\\
{| class="wikitable" style="margin: 0 auto; text-align:center"
U_{cd}&U_{cs}&U_{cb}\\
|+Lepton flavor properties
U_{td}&U_{ts}&U_{tb}\\
|-
\end{pmatrix}=\begin{pmatrix}
! Particle name
d\\
! Symbol
s\\
! Family/Generation
b\\
! [[Electric charge|Q]] ([[elementary charge|e]])
\end{pmatrix} </math>
! L<sub>e</sub>
! L<sub>μ</sub>
! L<sub>τ</sub>
! Mass (MeV)
! Lifetime ([[second|s]])
 
|-
|style="text-align:left"| [[Electron]]
| ''e<sup>−</sup>''
| 1
| −1
| +1
| 0
| 0
| 0.510 998 928(11)<ref name=NISTe/>
| Stable


|-  
The quarks can be arranged to exhibit right- and left-handedness, subscripts ''L'' and ''R'', to resemble the leptons. The right-handed quarks do not couple to the weak interaction, and are labeled with subscript ''R''. The left-handed quarks corresponding to these right-handed quarks are mixtures of quarks. Thus, the up and down quarks are assembled as:
|style="text-align:left"| [[Muon]]
| ''&mu;<sup>−</sup>''
| 2
|−1
| 0
| +1
| 0
| 105.658 3715(35)<ref name=NISTmu/>
| 2.197019(21) × 10<sup>−6</sup>


|-
:<math> \tbinom {u}{d}_L \ ; \ \ u_R,\ d_R \ .</math>
|style="text-align:left"| [[Tau]]
| ''&tau;<sup>−</sup>
| 3
| −1
| 0
| 0
| +1
| 1776.82(16)<ref name=NISTtau/>
| 2.906(10) × 10<sup>-13</sup>


|-
The other generations are arranged similarly:
|style="text-align:left"| [[Electron neutrino]]
| ''&nu;<sub>e</sub>''
| 1
| 0
| +1
| 0
| 0
| < 225 × 10<sup>−6</sup> <ref name=nuM/>
| Unknown


|-
:<math> \tbinom {c}{s}_L \ ; \ \ c_R,\ s_R \ , </math>
|style="text-align:left"| [[Muon neutrino]]
:<math> \tbinom {t}{b}_L \ ; \ \ t_R,\ b_R \ . </math>
| ''&nu;<sub>&mu;</sub>''
| 2
| 0
| 0
| +1
| 0
| < 0.19 <ref name=nuM/>
| Unknown
 
|-
|style="text-align:left"| [[Tau neutrino]]
| ''&nu;<sub>&tau;</sub>''
| 3
| 0
| 0
| 0
| +1
| < 18.2 <ref name=nuM/>
| Unknown
 
|}
The leptons have a ''weak isospin charge'', symbol ''I<sub>W3</sub>'', related to the ''weak hypercharge'', symbol ''Y<sub>W</sub>'', by:
 
:<math> Y_W = 2\left( Q-I_{W3} \right) \ , </math>
 
where ''Q'' is the [[electric charge]].
Leptons are classified as right- and left-handed. All the particles in the table exist in a left-handed form and these have a weak hypercharge of ''Y<sub>W</sub>''=−1. The weak isospin charge of a left-handed neutrino is ''I<sub>W3</sub>''=+1/2 and −1/2 for a left-handed ℓ<sup>−</sup> lepton. In addition, the electron, muon and tau exist in a right-handed form with ''Y''=−2 and ''I<sub>W3</sub>''=0. Right-handed neutrinos do not exist. Having a non-zero ''I<sub>W3</sub>'', only the left-handed leptons couple to the weak interaction.<ref name=Bettini/><ref name=Seiler/> Of course, all leptons with electric charge couple to the electromagnetic interaction.
 
===Quarks===
[[Quark]]s are a ''type'' of particle with spin 1/2 that are subject to strong, weak and electromagnetic forces. The known quarks are listed in the table below. The kinds of quark (''u, d, c, s, t, d'') are referred to as the ''flavor index'' of the quark, and besides a flavor index, each quark has a ''color index'', which may be any of three colors: red, green and blue (''r, g, b''). In a stretched analogy to light, a combination of three quarks with all three colors is referred to as "white" or "colorless" and exhibits no external evidence of a color index. Their antiparticles also are quarks, but carry ''anti''-colors: anti-red, anti-green, anti-blue. A combination of quark and anti-quark with a color and its anti-color is "white" or "colorless". 
 
Unlike a particle's electric charge, which can be any multiple of the elementary charge ''e'', a quark can carry only ''one'' unit of color. The elementary unit of color has not been measured, a result of failure to observe an isolated quark.
{| class="wikitable" style="margin: 0 auto; text-align:center"
{| class="wikitable" style="margin: 0 auto; text-align:center"
|+'''Quark flavor properties'''<ref name=Saxena/><ref name=Mansfield/>
|+'''Right- and left-handed quarks'''
! Name
! Symbol
! Symbol
! Family/Generation
! Electric charge, ''Q''
!width="50"|''B''
! Weak isospin, (''I<sub>W</sub>, I<sub>W3</sub>'')
!width="50"|''Y<sub>W</sub>''
! Weak hypercharge, (''Y<sub>W</sub>'')
!width="50"|''[[Electric charge|Q]]''([[elementary charge|''e'']])
!width="50"|''I<sub>S3</sub>''
!width="50"|''C''
!width="50"|''S''
!width="50"|''T''
!width="50"|''B&prime;''
!{{nowrap|Mass&thinsp;(MeV)}}
! Antiparticle
! Antiparticle symbol
 
|-
|-
| Up
| ''u<sub>L</sub>, c<sub>L</sub>, t<sub>L</sub>''
| ''u''
| +2/3
| 1
| (1/2, +1/2)
| +1/3
| +1/3
| +1/3
| +2/3
| +1/2
| 0
| 0
| 0
| 0
| 2.34 ± 0.19 <ref name=quark/>
| Antiup
| ''ū''
|-
|-
| Down
| ''d<sub>L</sub>, s<sub>L</sub>, b<sub>L</sub>''
| ''d''
| 1
| +1/3
| +1/3
| −1/3
| −1/3
| −1/2
| (1/2, −1/2)
| 0
| 0
| 0
| 0
| 4.78 ± 0.11 <ref name=quark/>
| Antidown
| <math>\overline d</math>
|-
| Strange
| ''s''
| 2
| +1/3
| +1/3
| −2/3
| −1/3
| 0
| 0
| −1
| 0
| 0
| 100.2 ± 2.4<ref name=quark/>
| Antistrange
| <math>\overline s</math>
|-
|-
| Charm
| ''u<sub>R</sub>, c<sub>R</sub>, t<sub>R</sub>''
| ''c''
| 2
| +1/3
| +4/3
| +2/3
| +2/3
| 0
| 0
| +1
| +4/3
| 0
| 0
| 0
| 1.294 ± 0.004 × 10<sup>3</sup> <ref name=quark/>
| Anticharm
| <math>\overline c</math>
|-
|-
| Bottom
| ''d<sub>R</sub>, s<sub>R</sub>, b<sub>R</sub>''
| ''b''
| 3
| +1/3
| -2/3
| −1/3
| −1/3
| 0
| 0
| 0
| −2/3
| 0
| 0
| −1
| 4.19 (+0.18) (−0.06) × 10<sup>3</sup> <ref name=quark/>
| Antibottom
| <math>\overline b</math>
|-
| Top
| ''t''
| 3
| +1/3
| +4/3
| +2/3
| 0
| 0
| 0
| +1
| 0
| 172.9 ±0.6 ±0.9 × 10<sup>3</sup> <ref name=quark/>
| Antitop
| <math>\overline t</math>
|}
<small><center>''B'' = [[baryon number]],''Y<sub>W</sub>'' = [[weak hypercharge]], ''Q'' = [[electric charge]], ''I<sub>S3</sub>'' = [[strong isospin]], ''C'' = [[Charm (quantum number)|charm]], ''S'' = [[strangeness]], ''T'' = [[topness]], ''B''&prime; = [[bottomness]]. <br />* Notation such as ±''xxx'' denotes [[measurement uncertainty]]. In the case of the top quark, the first uncertainty is [[statistical error|statistical]] in nature, and the second is [[systematic error|systematic]].</center></small>
 
The quarks carry fractional electric charge. However, no quark has been observed in isolation, so a "free" fractional electric charge has not been seen.
 
The quark structure of some strongly interacting sub-atomic particles (some [[hadron]]s) is shown in the following tables.<ref name=Chow/>
{| class="wikitable" style="margin: 0 auto; text-align:center"
|+'''Some baryons'''
! Name
! Symbol
! Quark structure
! Electric charge
! Spin
|-
|Proton
| <math>P</math>
| <math>uud</math>
| +1
| 1/2
|-
| Antiproton
| <math>\overline P</math>
| <math>\overline {u}\, \overline {u}\,\overline d</math>
| −1
| 1/2
|-
| Neutron
| <math>N</math>
| <math>udd</math>
| 0
| 1/2
|-
| Lambda
| <math>\Lambda</math>
| <math>uds</math>
| 0
| 1/2
|-
| Omega
| <math>\Omega^-</math>
| <math>sss</math>
| −1
| 3/2
|-
|-
|}
|}
&emsp;
{| class="wikitable" style="margin: 0 auto; text-align:center"
|+'''Some mesons'''
! Name
! Symbol
! Quark structure
! Electric charge
! Spin
|-
| Pion
| <math>\pi^+</math>
| <math>u\overline d</math>
| +1
| 0
|-
| Kaon
| <math>K^-</math>
| <math>s \overline {u}</math>
| −1
| 0
|-
| Rho
| <math>\rho^+</math>
| <math>u\overline d</math>
| +1
| 1
|-
| D-plus
| <math>D^+</math>
| <math>c \overline d</math>
| +1
| 0
|-
|-
| Eta-c
| <math>\eta_c</math>
| <math>c \overline c</math>
| 0
| 0
|-
|}
All baryons must have all three colors present, ''r, g, ''and'' b'', and so are colorless, and exhibit no external evidence of the strong color interaction. Likewise, regardless of the flavor combinations in a meson, the colors of the quark-antiquark cancel, so the meson also is colorless to the outside world.<ref name=McParland/> The role of the color force is thus simply to hold the quark combinations together, which is accomplished by exchange of gluons among the constituent quarks.
===Quanta===
Because gravitation is not included in the standard model, there are three type of interaction included. Each type of interaction is mediated by exchange of quanta that are [[boson]]s, sometimes called ''messenger particles''.<ref name=Britannica/>
{| class="wikitable" style="margin: 0 auto; text-align:center"
|+Messenger particles
|-
! Interaction field
! Particle name
! Symbol
! Spin
! Range ([[metre (unit)|m]])
! Mass(GeV)
|-
|style="text-align:left"| [[Electromagnetism|Electromagnetic field]]
| Photon
| <span style="font-family: Times New Roman; font-size:120%; font-weight:bold;"> γ </span>
| 1
| &infin;
| < 10<sup>−27</sup> <ref name=gammaM/>
|-
|style="text-align:left"| [[Weak field]]
| Weak bosons
| ''W<sup>+</sup>, W<sup>−</sup>, Z''
| 1
|  &asymp; 10<sup>−17</sup>
| ''M<sub>W</sub>''=80.399±0.023;<ref name=Wboson/> ''M<sub>Z</sub>''=91.1876±0.0021<ref name=Zboson/>
|-
|style="text-align:left"| [[Strong field]]
| Gluons (8)
| ''g''
| 1
| &asymp; 10<sup>−15</sup>
| 0<ref name=gluonM/>
|-
|}
====Photons====
The photon mediates the electromagnetic force and has a very long history. It has neither electric charge nor mass.
====Weak gauge bosons====
The massive ''W<sup>+</sup>, W<sup>−</sup>, Z'', weak bosons are the messenger particles for the weak force. Their nonzero mass is expected from the Standard Model because of the introduction of the ''[[Higgs boson]]'', a particle yet to be seen experimentally, and conjectured to have a mass as large as 1000 GeV.<ref name=Watson/> The ''W<sup>+</sup>, W<sup>−</sup>'' are antiparticles of each other and the  ''Z'' boson is its own antiparticle.
====Gluons====
Gluons mediate the strong force as an exchange force due to ''color'', one property of quarks. A gluon carries both a color and an anti-color. When a quark emits a gluon, its color changes in a way dependent upon the color/anti-color of the emitted gluon. For example, a red quark can emit a red-antiblue gluon, becoming a blue quark. There are nine possible color-anticolor combinations of ''r, g, b'', which leads to only eight possible gluons because emission by a quark of one color-anticolor combination <math>(r\overline r + g \overline g + b \overline b)/\sqrt{3} </math> doesn't change the state of a quark and cannot act as a messenger.<ref name=Boyarkin/> The remaining eight gluon color combinations are shown below.<ref name=Watson/>
{| class="wikitable" style="margin: 0 auto; text-align:center"
|+Gluon color combinations
|-
|style="text-align:left"| <math>r\overline g </math>
| style="text-align:left"|<math>g\overline b </math>
| style="text-align:left"|<math>b\overline r </math>
| <math>\frac{1}{\sqrt{6}}\left(r\overline r+g\overline g -2 b\overline b \right) </math>
|-
| style="text-align:left"|<math>g\overline r </math>
| style="text-align:left"|<math>b\overline g </math>
| style="text-align:left"|<math>r\overline b </math>
| <math>\frac{1}{\sqrt{2}}\left(r\overline r-g\overline g \right) </math>
|-
|}
The peculiar combinations: <math>(r\overline r + g \overline g + b \overline b)/\sqrt{3}\ , </math>,&emsp;<math>\left(r\overline r-g\overline g \right)/\sqrt{2}\ , </math>,&emsp; <math>\left(r\overline r+g\overline g -2 b\overline b \right)/\sqrt{6} \ ,</math>&emsp; result from arranging all the possible combinations of colors and anti-colors as symmetrized unit vectors in a space of color/anti-color products.
====Nuclear forces and mesons====
The interpretation of nuclear forces based upon the Standard Model and the quarks is described in the article [[Nuclear force]].
==References==
{{Reflist2|refs=
<ref name=Bettini>
{{cite book |title=Introduction to elementary particle physics |author=Alessandro Bettini |url=http://books.google.com/books?id=HNcQ_EiuTxcC&pg=PA305|pages=p. 305|isbn=0521880211 |publisher=Cambridge University Press |year=2008}}
</ref>
<ref name=Boyarkin>
{{cite book |title=Introduction to Physics of Elementary Particles |author=O. M. Boyarkin, Alfred L. Heinzerton |url=http://books.google.com/books?id=WFDs_SJgILQC&pg=PA2 |pages=p. 2 |isbn=160021200X |year=2007 |publisher=Nova Publishers}}
</ref>
<ref name=Britannica>
{{cite book |author=Britannica Educational Publishing |title=The Britannica Guide to Particle Physics |isbn=1615303820 |publisher=The Rosen Publishing Group |year=2011 |pages=p. 15 |url=http://books.google.com/books?id=NJP22nPwnRoC&pg=PA15 |chapter=The basic forces and their messenger particles |editor=Erik Gregersen, ed}}
</ref>
<ref name=Chow>
Information for tables from {{cite book |title=Gravity, black holes, and the very early universe: an introduction to general relativity and cosmology |author=Tai L. Chow |url=http://books.google.com/books?id=fp9wrkMYHvMC&pg=PA168 |pages=p. 168 |chapter=Tables 9.3 and 9.4 |isbn=0387736298 |year=2008 |publisher=Springer}}
</ref>
<ref name=gammaM>
{{cite web |url=http://pdg.lbl.gov/2011/listings/rpp2011-list-photon.pdf |title=&gamma; |work=PDG Particle listings  |author=K. Nakamura ''et al.'' |publisher=Particle Data Group |date=June 16, 2011 }}
</ref>
<ref name=gluonM>
{{cite web |url=http://pdg.lbl.gov/2011/listings/rpp2011-list-gluon.pdf |title=g or gluon |work=PDG Particle listings  |author=K. Nakamura ''et al.'' |publisher=Particle Data Group |date=June 16, 2011 }}
</ref>
<ref name=Mansfield>
{{cite book |title=Understanding Physics |author=Michael Mansfield, Colm O'Sullivan |url=http://books.google.com/books?id=19TCz0cxAFMC&pg=PA615 |pages=p. 615 |chapter=Table 22.5: Quark properies |isbn=1439048398 |year=2011 |edition=2nd ed |publisher=John Wiley and Sons}}
</ref>
<ref name=McParland>
{{cite book |title=Nuclear Medicine Radiation Dosimetry: Advanced Theoretical Principles |author=Brian J. McParland |url=http://books.google.com/books?id=wJUDIBstnMQC&pg=PA36 |pages=p. 36 |isbn=1848821255 |year=2010 |publisher=Springer}}
</ref>
<ref name=NISTe>
{{cite web |url=http://physics.nist.gov/cgi-bin/cuu/Value?mec2mev|search_for=electron |title=Electron mass energy equivalent in MeV ''m<sub>e</sub>c<sub>0</sub><sup>2</sup>'' |publisher=NIST |accessdate=2011-08-26}}
</ref>
<ref name=NISTmu>
{{cite web |url=http://physics.nist.gov/cgi-bin/cuu/Value?mmuc2mev|search_for=muon+ |title=Muon mass energy equivalent in MeV ''m<sub>&mu;</sub>c<sub>0</sub><sup>2</sup>''|publisher=NIST|accessdate=2011-08-26}}
</ref>
<ref name=NISTtau>
{{cite web |url=http://physics.nist.gov/cgi-bin/cuu/Value?mtauc2mev|search_for=tau|title=Tau mass energy equivalent in MeV ''m<sub>&tau;</sub>c<sub>0</sub><sup>2</sup>''|publisher=NIST|accessdate=2011-08-26}}
</ref>
<ref name=nuM>
{{cite web |url=http://pdg.lbl.gov/2011/listings/rpp2011-list-neutrino-prop.pdf |title=Neutrino properties |work=PDG Particle listings  |author=K. Nakamura ''et al.'' |publisher=Particle Data Group |date=June 16, 2011 }}
</ref>
<ref name=quark>
{{cite web |url=http://pdg.lbl.gov/2011/listings/contents_listings.html |title=QUARKS |work=PDG Particle listings  |author=K. Nakamura ''et al.'' |publisher=Particle Data Group |date=January 15, 2011 }}
</ref>
<ref name=Saxena>
{{cite book |title=Principles of modern physics |author=Ajay K. Saxena |url=http://books.google.com/books?id=hAUiRJCwsWgC&pg=PA796 |chapter=Table 18.13: The six quarks and their corresponding quantum numbers |isbn=1842652133 |year=2005 |publisher=Alpha Science Int'l Ltd.}}
</ref>
<ref name=Seiler>
{{cite book |title=Approaches to fundamental physics: an assessment of current theoretical ideas |author=HG Dosch |editor=Ion-Olimpiu Stamatescu, Erhard Seiler, eds |url=http://books.google.com/books?id=2Vpa6PxOs9IC&pg=PA34 |pages=p. 34 |isbn=3540711155 |year=2007 |publisher=Springer}}
</ref>
<ref name=Silva>
For an introduction, see {{cite book |title=Exploring Fundamental Particles |author=Lincoln Wolfenstein, Joao P. Silva |url=http://books.google.com/books?id=-2MnfdYCjrgC&pg=PA47 |pages=pp. 47 ''ff'' |chapter= Chapter 5: The birth of particle physics |isbn=1439836124 |year=2010 |publisher =Taylor & Francis}}
</ref>
<ref name=Watson>
{{cite book |title=The quantum quark |author=Andrew Watson |chapter=Table 4.4: The eight gluon color configurations |pages=p. 175 |url=http://books.google.com/books?id=ip50x8IOfnEC&pg=PA175 |isbn=0521829070 |publisher=Cambridge University Press |year=2004}}
</ref>
<ref name=Wboson>
{{cite web |url=http://pdg.lbl.gov/2011/listings/rpp2011-list-w-boson.pdf |title=W |work=PDG Particle listings  |author=K. Nakamura ''et al.'' |publisher=Particle Data Group |date=June 16, 2011 }}
</ref>
<ref name=Zboson>
{{cite web |url=http://pdg.lbl.gov/2011/listings/rpp2011-list-z-boson.pdf |title=Z |work=PDG Particle listings  |author=K. Nakamura ''et al.'' |publisher=Particle Data Group |date=June 16, 2011 }}
</ref>




}}
{{Reflist}}

Latest revision as of 04:07, 22 November 2023


The account of this former contributor was not re-activated after the server upgrade of March 2022.


Quarks

The quarks that may engage one another in reactions are determined by the Cabbibo-Kobayashi-Maskawa matrix:Morii

The quarks can be arranged to exhibit right- and left-handedness, subscripts L and R, to resemble the leptons. The right-handed quarks do not couple to the weak interaction, and are labeled with subscript R. The left-handed quarks corresponding to these right-handed quarks are mixtures of quarks. Thus, the up and down quarks are assembled as:

The other generations are arranged similarly:

Right- and left-handed quarks
Symbol Electric charge, Q Weak isospin, (IW, IW3) Weak hypercharge, (YW)
uL, cL, tL +2/3 (1/2, +1/2) +1/3
dL, sL, bL −1/3 (1/2, −1/2) +1/3
uR, cR, tR +2/3 0 +4/3
dR, sR, bR −1/3 0 −2/3