Legendre polynomials/Catalogs: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Paul Wormer
(New page: {{subpages}} :<math> \begin{align} P_0(x) &= 1 \\ P_1(x) &= x \\ P_2(x) &= \tfrac{1}{2}(3x^2-1)\\ P_3(x) &= \tfrac{1}{2}(5x^3 -3x)\\ P_4(x) &= \tfrac{1}{8}(...)
 
imported>Paul Wormer
No edit summary
 
Line 1: Line 1:
{{subpages}}
{{subpages}}
The first twelve Legendre polynomials are:


:<math>
:<math>
Line 14: Line 15:
P_9(x) &= \tfrac{1}{128}(12155x^9-  25740x^7 + 18018x^5 -4620x^3 + 315x)\\
P_9(x) &= \tfrac{1}{128}(12155x^9-  25740x^7 + 18018x^5 -4620x^3 + 315x)\\
P_{10}(x) &= \tfrac{1}{256}(46189 x^{10}-  109395x^8 + 90090x^6 - 30030x^4 + 3465x^2 - 63 )\\
P_{10}(x) &= \tfrac{1}{256}(46189 x^{10}-  109395x^8 + 90090x^6 - 30030x^4 + 3465x^2 - 63 )\\
P_{11}(x) &= \tfrac{1}{256}( 88179x^{11}-  230945x^9 + 218790x^7 - 90090x^5 + 15015x^3 - 693x )\\
\end{align}
\end{align}
</math>
</math>

Latest revision as of 06:04, 9 September 2009

This article is developed but not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
Catalogs [?]
 
An informational catalog, or several catalogs, about Legendre polynomials.

The first twelve Legendre polynomials are: