Sturm-Liouville theory/Proofs: Difference between revisions
imported>Dan Nessett (forced the generation of a table of contents) |
imported>Dan Nessett (Adjust vertical alignment on some equations) |
||
(3 intermediate revisions by the same user not shown) | |||
Line 7: | Line 7: | ||
==Orthogonality Theorem== | ==Orthogonality Theorem== | ||
<math> \langle f, g\rangle = \int_{a}^{b} \overline{f(x)} g(x)w(x)\,dx</math> | <span style="display:inline-block; vertical-align:middle"><math> \langle f, g\rangle = \int_{a}^{b} \overline{f(x)} g(x)w(x)\,dx \ = \ 0</math> </span>, where f(x) and g(x) are solutions to the Sturm-Liouville equation corresponding to distinct eigenvalues and w(x) is the "weight" or "density" function. | ||
===Proof=== | ===Proof=== | ||
Let | Let f(x) and g(x) be solutions of the Sturm-Liouville equation [[Sturm-Liouville theory#(1) | (1) ]] corresponding to eigenvalues <math>\lambda </math> and <math> \mu </math> respectively. Multiply the equation for g(x) by | ||
<span style="text-decoration:overline">f</span>(x) (the complex conjugate of f(x)) to get: | |||
< | |||
<math>-\bar{f} \left( x\right) \frac{d\left( p\left( x\right) \frac{dg}{dx} | <span style="display:inline-block; vertical-align:middle"><math>-\bar{f} \left( x\right) \frac{d\left( p\left( x\right) \frac{dg}{dx} | ||
\left( x\right) \right) }{dx} +\bar{f} \left( x\right) q\left( x\right) | \left( x\right) \right) }{dx} +\bar{f} \left( x\right) q\left( x\right) | ||
g\left( x\right) =\mu \bar{f} \left( x\right) w\left( x\right) g\left( | g\left( x\right) =\mu \bar{f} \left( x\right) w\left( x\right) g\left( | ||
x\right) </math> | x\right) </math> </span> | ||
(Only | (Only | ||
f(x), g(x), | |||
<math>\lambda </math>, and | <math>\lambda </math>, and | ||
<math>\mu </math> | <math>\mu </math> | ||
may be complex; all other quantities are real.) Complex conjugate | may be complex; all other quantities are real.) Complex conjugate | ||
this equation, exchange | this equation, exchange | ||
f(x) | |||
and | and | ||
g(x), and subtract the new equation from the original: | |||
<math>-\bar{f} \left( x\right) \frac{d\left( p\left( x\right) \frac{dg}{dx} | <span style="display:inline-block; vertical-align:middle"><math>-\bar{f} \left( x\right) \frac{d\left( p\left( x\right) \frac{dg}{dx} | ||
\left( x\right) \right) }{dx} +g\left( x\right) \frac{d\left( p\left( | \left( x\right) \right) }{dx} +g\left( x\right) \frac{d\left( p\left( | ||
x\right) \frac{d\bar{f} }{dx} \left( x\right) \right) }{dx} =\frac{d\left( | x\right) \frac{d\bar{f} }{dx} \left( x\right) \right) }{dx} =\frac{d\left( | ||
Line 37: | Line 36: | ||
x\right) -\bar{f} \left( x\right) \frac{dg}{dx} \left( x\right) \right] | x\right) -\bar{f} \left( x\right) \frac{dg}{dx} \left( x\right) \right] | ||
\right) }{dx} =\left( \mu -\bar{\lambda} \right) \bar{f} \left( x\right) | \right) }{dx} =\left( \mu -\bar{\lambda} \right) \bar{f} \left( x\right) | ||
g\left( x\right) w\left( x\right) | g\left( x\right) w\left( x\right) </math></span> <br><br> | ||
Integrate this between the limits | Integrate this between the limits | ||
<math>x=a</math> | <math>x=a</math> | ||
Line 56: | Line 55: | ||
conditions, which are either: | conditions, which are either: | ||
: <math>\bullet </math> periodic boundary conditions, i.e., that | : <math>\bullet </math> periodic boundary conditions, i.e., that f(x), g(x), and their first derivatives (as well as p(x)) have the same values at <math>x=b</math> as at <math>x=a</math>, or | ||
: <math>\bullet </math> that independently at <math>x=a</math> and at <math>x=b</math> either: | : <math>\bullet </math> that independently at <math>x=a</math> and at <math>x=b</math> either: | ||
:: <math>\bullet </math> the condition cited in equation [[Sturm-Liouville theory#(2) | (2) ]] or [[Sturm-Liouville theory#(3) | (3) ]] holds or: | :: <math>\bullet </math> the condition cited in equation [[Sturm-Liouville theory#(2) | (2) ]] or [[Sturm-Liouville theory#(3) | (3) ]] holds or: | ||
:: <math>\bullet </math> <math>p | :: <math>\bullet </math> <math>p(x)=0</math>. | ||
So: <math>\left( \mu -\bar{\lambda} \right) \int\nolimits_{a}^{b}\bar{f} \left(x\right) g\left( x\right) w\left( x\right) dx =0</math> | So: <span style="display:inline-block; vertical-align:middle"><math>\left( \mu -\bar{\lambda} \right) \int\nolimits_{a}^{b}\bar{f} \left(x\right) g\left( x\right) w\left( x\right) dx =0</math></span> | ||
If we set | If we set | ||
<math>f=g</math> | <math>f=g</math> | ||
, so that the integral surely is non-zero, then it follows that | , so that the integral surely is non-zero, then it follows that | ||
< | <span style="text-decoration:overline">λ</span> =λ that is, the eigenvalues are real, making the differential operator in the Sturm-Liouville equation self-adjoint (hermitian); so: | ||
<math>\left( \mu -\lambda \right) \int\nolimits_{a}^{b}\bar{f} \left( x\right) | <span style="display:inline-block; vertical-align:middle"><math>\left( \mu -\lambda \right) \int\nolimits_{a}^{b}\bar{f} \left( x\right) | ||
g\left( x\right) w\left( x\right) dx =0</math> | g\left( x\right) w\left( x\right) dx =0</math></span> | ||
It follows that, if | It follows that, if |
Latest revision as of 18:34, 4 September 2009
This article proves that solutions to the Sturm-Liouville equation corresponding to distinct eigenvalues are orthogonal. Note that when the Sturm-Liouville problem is regular, distinct eigenvalues are guaranteed. For background see Sturm-Liouville theory.
Orthogonality Theorem
, where f(x) and g(x) are solutions to the Sturm-Liouville equation corresponding to distinct eigenvalues and w(x) is the "weight" or "density" function.
Proof
Let f(x) and g(x) be solutions of the Sturm-Liouville equation (1) corresponding to eigenvalues and respectively. Multiply the equation for g(x) by f(x) (the complex conjugate of f(x)) to get:
(Only f(x), g(x), , and may be complex; all other quantities are real.) Complex conjugate this equation, exchange f(x) and g(x), and subtract the new equation from the original:
Integrate this between the limits
and
.
The right side of this equation vanishes because of the boundary conditions, which are either:
- periodic boundary conditions, i.e., that f(x), g(x), and their first derivatives (as well as p(x)) have the same values at as at , or
- that independently at and at either:
So:
If we set , so that the integral surely is non-zero, then it follows that λ =λ that is, the eigenvalues are real, making the differential operator in the Sturm-Liouville equation self-adjoint (hermitian); so:
It follows that, if and have distinct eigenvalues, then they are orthogonal. QED.