Stably free module: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Richard Pinch
(New article, my own wording from Wikipedia)
 
mNo edit summary
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
{{subpages}}
In [[mathematics]], a '''stably free module''' is a [[module (mathematics)|module]] which is close to being [[free module|free]].
In [[mathematics]], a '''stably free module''' is a [[module (mathematics)|module]] which is close to being [[free module|free]].


Line 13: Line 14:


==References==
==References==
* {{cite book | author=Serge Lang | authorlink=Serge Lang | title=Algebra | edition=3rd ed. | publisher=[[Addison-Wesley]] | year=1993 | isbn=0-201-55540-9 | page=840}}
* {{cite book | author=Serge Lang | authorlink=Serge Lang | title=Algebra | edition=3rd ed. | publisher=[[Addison-Wesley]] | year=1993 | isbn=0-201-55540-9 | page=840}}[[Category:Suggestion Bot Tag]]
 
[[Category:Module theory]]
[[Category:Free algebraic structures]]
 
{{algebra-stub}}

Latest revision as of 17:00, 21 October 2024

This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In mathematics, a stably free module is a module which is close to being free.

Definition

A module M over a ring R is stably free if there exist free modules F and G over R such that

Properties

  • A module is stably free if and only if it possesses a finite free resolution.

See also

References