User talk:Dmitrii Kouznetsov/Analytic Tetration: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Dmitrii Kouznetsov
imported>Dmitrii Kouznetsov
 
(8 intermediate revisions by the same user not shown)
Line 4: Line 4:


Copypast from http://math.eretrandre.org/tetrationforum/showthread.php?tid=165&pid=2458#pid2458
Copypast from http://math.eretrandre.org/tetrationforum/showthread.php?tid=165&pid=2458#pid2458
===Theorem T1. (about Gamma funciton)===
===Theorem T1. (about Gamma function)===
'''Let''' <math>~F~</math> be [[holomorphic]] on the right half plane
'''Let''' <math>~F~</math> be [[holomorphic]] on the right half plane
'''let''' <math>~F(z+1)=zF(z)~</math> for  all <math>~z~</math> such that <math>~\Re(z)>0~</math>.<br>  
'''let''' <math>~F(z+1)=zF(z)~</math> for  all <math>~z~</math> such that <math>~\Re(z)>0~</math>.<br>  
Line 11: Line 11:
'''Then''' <math>~F~</math> is the [[gamma function]].
'''Then''' <math>~F~</math> is the [[gamma function]].


'''Proof''' see in Reinhold Remmert, "Funktionnentheorie", Springer, 1995. As reference is given: H. Wielandt 1939. (Mein Gott, so old reference!)
'''Proof''', see in Reinhold Remmert, "Funktionnentheorie", Springer, 1995. As reference is given: H. Wielandt 1939. (Mein Gott, so old reference!)
 
Consider function
<math>~v=F-\Gamma~</math> on the right half plane, it also satisfies equation
<math>~v(z+1)~=~z~v(z)~</math>
Hence,
<math>~v~</math> has a [[meromorphic]] continuation to
<math>~\mathbb{C}~</math>;
and the poles are allowed only at non–positive integer values of the argument.
 
While <math>~v(1)=0~</math>, we have
<math>~\lim_{z\rightarrow 0} z~v(z)=0~</math>,
hence, <math>~v~</math> has a holomorphic continuation to 0 and also to each
<math>~-n~</math>,
<math>~n\in \mathbb{N} </math> by
<math>~v(z+1)=z~v(z)~</math>.
 
In the range
<math>~ 1\le \Re(z) <2 ~</math>,
<math>~v(z)~                  </math> is pounded. It is because function
<math>~ \Gamma ~        </math> is bounded there.
 
Then <math>~v(z)~</math> is also restricted on <math>~\mathbb{S}~</math>,
because <math>~v(z)!</math> and <math>~v(1-z)!</math> have the same values on
<math>~\mathbb{S}~</math>.  Now <math>~q(z+1)=-q(z)~</math>, hence <math>~q~</math> is bounded on whole <math>~\mathbb{C}~</math>, and by the
[[Liouville Theorem]], <math>~q(z)=q(1)=0</math>. Hence, <math>~v=0~</math>
and <math>~F=\Gamma~</math>.
 
(end of proof)


===Theorem T2 (about exponential)===
===Theorem T2 (about exponential)===
Line 47: Line 75:
'''Discussion'''. Id est, <math>~F~</math> is [[Fibbonachi function]].
'''Discussion'''. Id est, <math>~F~</math> is [[Fibbonachi function]].


===Theorem T4===
===Theorem T4 (about tetration)===
====First intent to formulate====
'''Let''' <math>~b> \exp(1/\mathrm e)~</math>. <br>
'''Let''' <math>~b> \exp(1/\mathrm e)~</math>. <br>
'''Let''' each of <math>~F_1~</math> and <math>~F_2~</math> satisfies conditions
'''Let''' each of <math>~F_1~</math> and <math>~F_2~</math> satisfies conditions
Line 53: Line 82:
:<math>~F(z)~</math> is [[holomorphic function]], bounded in the strip <math>~|\Re(z)| \le 1 ~</math> . <br>
:<math>~F(z)~</math> is [[holomorphic function]], bounded in the strip <math>~|\Re(z)| \le 1 ~</math> . <br>
'''Then''' <math> ~F_1=F_2~ </math>  
'''Then''' <math> ~F_1=F_2~ </math>  
====Second intent to formulate====
(0) '''Let''' <math>~b> \exp(1/\mathrm e)~</math>. <br>
(1) '''Let''' each of <math>~F_1~</math> and <math>~F_2~</math> is [[holomorphic function]]
on <math>~\mathbb{C}^{\prime}=\mathbb{C}\backslash (-\infty,-2]</math>,
satisfying conditions
(2) <math> F(0)=1</math>
(3) <math>~\exp_b(F(z))=F(z+1)~</math> for <math>\Re(z)>-2</math>
(4) <math>~F~</math> is bounded on
<math>~\mathbb{S}=~\{x+\mathrm{i} y|-2<x\le 1, y\in \mathbb{R}  \}</math>
'''Then''' <math> ~F_1=F_2~ </math>
====Proof of Theorem T4====
=====Lemma 1=====
(0) '''Let''' <math>~b> \exp(1/\mathrm e)~</math>. <br>
(1) '''Let''' <math>~f~</math> be [[holomorphic function]]
on <math>~\mathbb{C}^{\prime}=\mathbb{C}\backslash (-\infty,-2]~</math>,
such that
(2) <math> f(0)=1</math>
(3) <math>~\exp_b(f(z))=f(z+1)~</math> for <math>\Re(z)>-2~</math>
(4) <math>~f~</math> is bounded on
<math>~\mathbb{S}=~\{x+\mathrm{i} y|-2<x\le 1, y\in \mathbb{R}  \}~</math>
'''Let''' <math>~ \mathbb{D} = ~\{x+\mathrm{i} y|-2<x, y\in \mathbb{R}  \}~</math>
'''Then''' <math>~ f( \mathbb{D} ) = \mathbb{C} ~ </math>
=====Proof of Lemma 1=====
=====Proof of theorem T4=====
'''Henryk, I cannot copypast your proof here: I do not see, where do you use condition'''
<math>~b>\exp( 1/ \mathrm{e} ) </math>
?
From Lemma 1, the ...


'''Discussion'''. Such <math>~F~</math> is unique tetration on the base <math>~b~</math>.
====Discussion====
Such <math>~F~</math> is unique tetration on the base <math>~b~</math>.

Latest revision as of 07:23, 29 September 2008

Henryk Trappmann 's theorems

This is approach to the Second part of the Theorem 0, which is still absent in the main text.

Copypast from http://math.eretrandre.org/tetrationforum/showthread.php?tid=165&pid=2458#pid2458

Theorem T1. (about Gamma function)

Let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~F~} be holomorphic on the right half plane let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~F(z+1)=zF(z)~} for all Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~z~} such that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\Re(z)>0~} .
Let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~F(1)=1~} .
Let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F} be bounded on the strip Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~1 \le \Re(z)<2 ~} .
Then Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~F~} is the gamma function.

Proof, see in Reinhold Remmert, "Funktionnentheorie", Springer, 1995. As reference is given: H. Wielandt 1939. (Mein Gott, so old reference!)

Consider function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~v=F-\Gamma~} on the right half plane, it also satisfies equation Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~v(z+1)~=~z~v(z)~} Hence, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~v~} has a meromorphic continuation to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\mathbb{C}~} ; and the poles are allowed only at non–positive integer values of the argument.

While Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~v(1)=0~} , we have Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\lim_{z\rightarrow 0} z~v(z)=0~} , hence, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~v~} has a holomorphic continuation to 0 and also to each Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~-n~} , by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~v(z+1)=z~v(z)~} .

In the range Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~ 1\le \Re(z) <2 ~} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~v(z)~ } is pounded. It is because function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~ \Gamma ~ } is bounded there.

Then Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~v(z)~} is also restricted on Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\mathbb{S}~} , because Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~v(z)!} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~v(1-z)!} have the same values on Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\mathbb{S}~} . Now Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~q(z+1)=-q(z)~} , hence Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~q~} is bounded on whole Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\mathbb{C}~} , and by the Liouville Theorem, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~q(z)=q(1)=0} . Hence, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~v=0~} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~F=\Gamma~} .

(end of proof)

Theorem T2 (about exponential)

Let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~E~} be solution of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~ E(z+1)=b E(x)~} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~ E(1)=b ~} , bounded in the strip Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~ 0\le \Re(z)<1 ~} .

Then Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~E~} is exponential on base Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~b~} , id est, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~E=\exp_b~} .

Proof. We know that every other solution must be of the form Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~g(z)=f(z+p(z))~ } where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~ p~} is a 1-periodic holomorphic function. This can roughly be seen by showing periodicity of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~h(z)=f^{-1} (g(z))-z~ } .

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~ f(z+p(z))=b^{z+p(z)}=b^{p(z)}b^z=b^p(z)f(z)~=q(z)f(z) ~} ,

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~ q(z)=b^p(z) ~} is also a 1-periodic function,

While each of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~f~} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~g~} is bounded on Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\mathbb{S}~ } , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~q~} must be bounded too.

Theorem T3 (about Fibbonachi)

Let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\phi=\frac{1+\sqrt{5}}{2}~} .
Let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~F(z+1)=F(z)+F(z-1)~} Let Let

Then

Discussion. Id est, is Fibbonachi function.

Theorem T4 (about tetration)

First intent to formulate

Let .
Let each of and satisfies conditions

for
is holomorphic function, bounded in the strip .

Then

Second intent to formulate

(0) Let .

(1) Let each of and is holomorphic function on , satisfying conditions

(2)

(3) for

(4) is bounded on

Then

Proof of Theorem T4

Lemma 1

(0) Let .

(1) Let be holomorphic function on , such that

(2)

(3) for

(4) is bounded on

Let

Then

Proof of Lemma 1
Proof of theorem T4

Henryk, I cannot copypast your proof here: I do not see, where do you use condition



?

From Lemma 1, the ...

Discussion

Such  is unique tetration on the base .