Brain evolution/Bibliography: Difference between revisions
Jump to navigation
Jump to search
imported>Daniel Mietchen (+one) |
imported>Daniel Mietchen |
||
(39 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
{{subpages}} | {{subpages}} | ||
==Reviews== | |||
*{{CZ:Ref:Nielsen 1999 Origin of the chordate central nervous system - and the origin of chordates}} | |||
*{{CZ:Ref:Holland 1999 Chordate origins of the vertebrate central nervous system}} | |||
==Research articles== | |||
<!-- this section needs some cleanup --> | |||
*{{CZ:Ref:Dechmann 2009 Comparative studies of brain evolution: a critical insight from the Chiroptera}} | |||
*{{CZ:Ref:Pradel 2009 Skull and brain of a 300-million-year-old chimaeroid fish revealed by synchrotron holotomography}} | |||
*{{CZ:Ref:Isler 2009 Why are there so few smart mammals (but so many smart birds)?}} | |||
*{{:CZ:Ref:DOI:10.1007/s00429-008-0198-9}} | |||
*{{CZ:Ref:Abdel-Mannan 2008 Evolution of cortical neurogenesis}} | |||
*{{CZ:Ref:Ghika 2008 Paleoneurology: Neurodegenerative diseases are age-related diseases of specific brain regions recently developed by homo sapiens}} | |||
*{{citation | *{{citation | ||
| author = Fitch, W. T. | | author = Fitch, W. T. | ||
Line 22: | Line 34: | ||
| doi = 10.1111/j.1469-7580.2008.00868.x | | doi = 10.1111/j.1469-7580.2008.00868.x | ||
}} | }} | ||
*{{ | *{{CZ:Ref:Vallender 2008 Genetic basis of human brain evolution}} | ||
}} | |||
*{{cite journal | *{{cite journal | ||
| author = Emes, R.D. | | author = Emes, R.D. | ||
Line 45: | Line 45: | ||
| doi = 10.1038/nn.2135 | | doi = 10.1038/nn.2135 | ||
}} | }} | ||
*{{CZ:Ref:Morand-Ferron 2007 Food stealing in birds: brain or brawn?}} | |||
*{{citation | |||
| last1 = Kurochkin | first1 = E.N. | |||
| last2 = Dyke | first2 = G.J. | |||
| last3 = Saveliev | first3 = S.V. | |||
| last4 = Pervushov | first4 = E.M. | |||
| last5 = Popov | first5 = E.V. | |||
| year = 2007 | |||
| title = A fossil brain from the Cretaceous of European Russia and avian sensory evolution | |||
| journal = Biology Letters | |||
| volume = 3 | |||
| issue = 3 | |||
| pages = 309–313 | |||
| doi = 10.1098/rsbl.2006.0617 | |||
| url = http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2390680 | |||
}} | |||
*{{citation | |||
| last1 = Tartarelli | first1 = G. | |||
| last2 = Bisconti | first2 = M. | |||
| year = 2007 | |||
| title = Trajectories and Constraints in Brain Evolution in Primates and Cetaceans | |||
| journal = Human Evolution | |||
| volume = 21 | |||
| issue = 3 | |||
| pages = 275–287 | |||
| doi = 10.1007/s11598-006-9027-4 | |||
| url = http://www.springerlink.com/index/X0LN56MH8V0742J1.pdf | |||
}} | |||
*{{:CZ:Ref:DOI:10.1111/j.1460-9568.2006.04611.x}} | |||
*{{:CZ:Ref:Lian2006cdd}} | |||
*{{:CZ:Ref:DOI:10.1159/000094088}} | |||
*{{CZ:Ref:Toga 2006 Mapping brain maturation}} | |||
:Quote: "Areas with more advanced functions – integrating information from the senses, reasoning and other ‘executive’ functions (e.g. prefrontal cortex) – matured last, in late adolescence. This sequence also provided evidence that phylogenetically older cortical areas mature earlier than the more recently evolved higher-order association cortices, which integrate information from earlier maturing cortex." | |||
*{{citation | |||
| last1 = Shoshani | first1 = J. | |||
| last2 = Kupsky | first2 = W.J. | |||
| last3 = Marchant | first3 = G.H. | |||
| year = 2006 | |||
| title = Elephant brain Part I: Gross morphology, functions, comparative anatomy, and evolution | |||
| journal = Brain Research Bulletin | |||
| volume = 70 | |||
| issue = 2 | |||
| pages = 124–157 | |||
| doi = 10.1016/j.brainresbull.2006.03.016 | |||
| url = http://linkinghub.elsevier.com/retrieve/pii/S0361923006001146 | |||
}} | |||
*{{CZ:Ref:Pollard 2006 An RNA gene expressed during cortical development evolved rapidly in humans}} | |||
*{{CZ:Ref:Schillaci 2006 Sexual Selection and the Evolution of Brain Size in Primates}} | |||
*{{:CZ:Ref:DOI:10.1073/pnas.0606337103}} | |||
*{{:CZ:Ref:DOI:10.1073/pnas.0605843103}} | |||
*{{:CZ:Ref:DOI:10.1016/j.tics.2005.01.004}} | |||
*{{CZ:Ref:Roth 2005 Evolution of the brain and intelligence}} | |||
*{{cite journal | *{{cite journal | ||
| author = Carroll, S.B. | | author = Carroll, S.B. | ||
Line 74: | Line 126: | ||
| pages = 317-331 | | pages = 317-331 | ||
| doi = 10.1016/j.brainresbull.2005.05.007 | | doi = 10.1016/j.brainresbull.2005.05.007 | ||
}} | }} | ||
*{{citation | *{{citation | ||
Line 97: | Line 138: | ||
| url = http://www.ncbi.nlm.nih.gov/pubmed/12626858 | | url = http://www.ncbi.nlm.nih.gov/pubmed/12626858 | ||
}} | }} | ||
*{{CZ:Ref:Aboitiz 2002 Critical steps in the early evolution of the isocortex: Insights from developmental biology}} | |||
*{{citation | *{{citation | ||
| author = Harrison, K.H.; Hof, P.R.; Wang, S.S. | | author = Harrison, K.H.; Hof, P.R.; Wang, S.S. | ||
Line 108: | Line 150: | ||
| url = http://www.ncbi.nlm.nih.gov/pubmed/12815248 | | url = http://www.ncbi.nlm.nih.gov/pubmed/12815248 | ||
}} | }} | ||
*{{CZ:Ref:Marino 2002 Convergence of complex cognitive abilities in cetaceans and primates}} | |||
*{{:CZ:Ref:DOI:10.1016/S1364-6613(00)01601-6}} | |||
*{{:CZ:Ref:Clark2001sam}} | |||
:{{:CZ:Ref:DOI:10.1038/35075564/Quote1}} | |||
*{{citation | *{{citation | ||
| author = Changizi, M.A. | | author = Changizi, M.A. | ||
Line 130: | Line 176: | ||
| url = http://cercor.oxfordjournals.org/cgi/content/full/11/12/1101 | | url = http://cercor.oxfordjournals.org/cgi/content/full/11/12/1101 | ||
| pmid = 11709481 | | pmid = 11709481 | ||
}} | |||
*{{:CZ:Ref:DOI:10.1016/S0959-4388(99)00012-4}} | |||
*{{:CZ:Ref:DOI:10.1006/jhev.1999.0313}} | |||
*{{:CZ:Ref:DOI:10.1073/pnas.95.3.1242}} | |||
:{{:CZ:Ref:DOI:10.1073/pnas.95.3.1242/Quote1}} | |||
*{{:CZ:Ref:DOI:10.1111/j.1440-1681.1998.tb02289.x}} | |||
*{{CZ:Ref:Ridley 1995 Pelvic sexual dimorphism and relative neonatal brain size really are related}} | |||
*{{:CZ:Ref:DOI:10.1086/204350}} | |||
*{{CZ:Ref:Kaas 1989 The evolution of complex sensory systems in mammals}} | |||
*{{:CZ:Ref:DOI:10.1016/0896-6273(93)90194-V}} | |||
*{{:CZ:Ref:DOI:10.1093/icb/30.3.629}} | |||
*{{citation | |||
| last = Jackson | first = J. Hughlings | |||
| year = 1887 | |||
| title = Remarks on Evolution and Dissolution of the Nervous System | |||
| journal = The British Journal of Psychiatry | |||
| volume = 33 | |||
| issue = 141 | |||
| pages = 25-48 | |||
| doi = 10.1192/bjp.33.141.25 | |||
| url = http://bjp.rcpsych.org/cgi/reprint/33/141/25 | |||
}} | }} |
Latest revision as of 19:13, 28 May 2010
- Please sort and annotate in a user-friendly manner. For formatting, consider using automated reference wikification.
Reviews
- Nielsen C (1999). "Origin of the chordate central nervous system - and the origin of chordates". Dev Genes Evol 209 (3): 198-205. DOI:10.1007/s004270050244. PMID 10079363. Research Blogging. [e]
- Holland LZ, Holland ND (1999). "Chordate origins of the vertebrate central nervous system". Curr Opin Neurobiol 9 (5): 596-602. DOI:10.1016/S0959-4388(99)00003-3. PMID 10508734. Research Blogging. [e]
Research articles
- Dechmann DK, Safi K (2009). "Comparative studies of brain evolution: a critical insight from the Chiroptera". Biol Rev Camb Philos Soc 84 (1): 161-72. DOI:10.1111/j.1469-185X.2008.00067.x. PMID 19183335. Research Blogging. [e]
- Pradel, Alan; Max Langer & John G. Maisey et al. (2009), "Skull and brain of a 300-million-year-old chimaeroid fish revealed by synchrotron holotomography", Proceedings of the National Academy of Sciences: in press, DOI:10.1073/pnas.0807047106 [e]
- Synchrotron-based neuroimaging of what may be the oldest known fossil brain.
- Isler, K. & C.P. Van Schaik (2009), "Why are there so few smart mammals (but so many smart birds)?", Biology Letters: in press, DOI:10.1098/rsbl.2008.0469 [e]
- Builds on the expensive tissue hypothesis proposed by Aiello & Wheeler (1995) and provides evidence that the maximum rate of population increase, as defined by Cole (1954), is correlated negatively with brain size in mammals and birds, as long as parental care is not provided (and thus the energetic costs of feeding borne) by the mothers alone. Predicts that such allomaternal care increases the "maximum viable brain size" in a given family and that brain size evolution is strongly coupled to mass extinction events.
- Sherwood, C.C.; C.D. Stimpson & C. Butti et al. (2008), "Neocortical neuron types in Xenarthra and Afrotheria: implications for brain evolution in mammals", Brain structure & function: in press, DOI:10.1007/s00429-008-0198-9 [e]
- Abdel-Mannan, O.; A.F.P. Cheung & Z. Molnár (2008), "Evolution of cortical neurogenesis", Brain Research Bulletin 75 (2-4): 398–404, DOI:10.1016/j.brainresbull.2007.10.047 [e]
- Ghika, J. (2008), "Paleoneurology: Neurodegenerative diseases are age-related diseases of specific brain regions recently developed by homo sapiens", Medical Hypotheses 71: 788-801, DOI:10.1016/j.mehy.2008.05.034 [e]
- Fitch, W. T. (2008), "Glossogeny and phylogeny: cultural evolution meets genetic evolution", Trends in Genetics 24 (8): 373–374, DOI:10.1016/j.tig.2008.05.003
- Sherwood, C.C.; Subiaul, F.; Zawidzki, T. (2008). "A natural history of the human mind: tracing evolutionary changes in brain and cognition". Journal of Anatomy 212 (4): 426-454. DOI:10.1111/j.1469-7580.2008.00868.x. Research Blogging.
- Vallender, E.J.; N. Mekel-Bobrov & B.T. Lahn (2008), "Genetic basis of human brain evolution", Trends in Neurosciences 31: 637, DOI:10.1016/j.tins.2008.08.010 [e]
- A brief and balanced overview over the genetic mechanisms currently deemed relevant for the evolution of the human brain, along with pointers to some related methodological issues.
- Emes, R.D.; Pocklington, A.J.; Anderson, C.N.G.; Bayes, A.; Collins, M.O.; Vickers, C.A.; Croning, M.D.R.; Malik, B.R.; Choudhary, J.S.; Armstrong, J.D.; Others, (2008). "Evolutionary expansion and anatomical specialization of synapse proteome complexity". Nature Neuroscience (6): pages to be defined. DOI:10.1038/nn.2135. Research Blogging.
- Morand-Ferron, J.; D. Sol & L. Lefebvre (2007), "Food stealing in birds: brain or brawn?", Animal Behaviour 74 (6): 1725–1734, DOI:10.1016/j.anbehav.2007.04.031 [e]
- Provides a literature review based on "856 reports of interspecific kleptoparasitism by 197 species from 33 avian families", concluding that this behaviour correlates with brain size (and hence cognition), habitat and diet but not with body size or aggression.
- Kurochkin, E.N.; G.J. Dyke & S.V. Saveliev et al. (2007), "A fossil brain from the Cretaceous of European Russia and avian sensory evolution", Biology Letters 3 (3): 309–313, DOI:10.1098/rsbl.2006.0617
- Tartarelli, G. & M. Bisconti (2007), "Trajectories and Constraints in Brain Evolution in Primates and Cetaceans", Human Evolution 21 (3): 275–287, DOI:10.1007/s11598-006-9027-4
- Molnár, Z.; C. Métin & A. Stoykova et al. (2006), "Comparative aspects of cerebral cortical development", Eur J Neurosci 23 (4): 921–934, DOI:10.1111/j.1460-9568.2006.04611.x [e]
- Jaaro, H. & M. Fainzilber (2006), "Building Complex Brains-Missing Pieces in an Evolutionary Puzzle", Brain Behav Evol 68 (3): 191–195, DOI:10.1159/000094088 [e]
- Toga AW, Thompson PM, Sowell ER (2006). "Mapping brain maturation". Trends Neurosci 29 (3): 148-59. DOI:10.1016/j.tins.2006.01.007. PMID 16472876. Research Blogging. [e]
- Quote: "Areas with more advanced functions – integrating information from the senses, reasoning and other ‘executive’ functions (e.g. prefrontal cortex) – matured last, in late adolescence. This sequence also provided evidence that phylogenetically older cortical areas mature earlier than the more recently evolved higher-order association cortices, which integrate information from earlier maturing cortex."
- Shoshani, J.; W.J. Kupsky & G.H. Marchant (2006), "Elephant brain Part I: Gross morphology, functions, comparative anatomy, and evolution", Brain Research Bulletin 70 (2): 124–157, DOI:10.1016/j.brainresbull.2006.03.016
- Pollard, Katherine S.; Sofie R. Salama & Nelle Lambert et al. (2006), "An RNA gene expressed during cortical development evolved rapidly in humans", Nature 443 (7108): 167-172, DOI:10.1038/nature05113 [e]
- Schillaci, Michael A. (2006), "Sexual Selection and the Evolution of Brain Size in Primates", PLoS ONE 1: e62, DOI:10.1371/journal.pone.0000062 [e]
- Shows a correlation between brain size and monogamy in primates.
- Marino, L. (2006), "Absolute brain size: Did we throw the baby out with the bathwater?", Proceedings of the National Academy of Sciences 103 (37): 13563-13564, DOI:10.1073/pnas.0606337103 [e]
- Sherwood, C.C.; C.D. Stimpson & M.A. Raghanti et al. (2006), "Evolution of increased glia-neuron ratios in the human frontal cortex", Proc Natl Acad Sci USA 103 (37): 13606–13611, DOI:10.1073/pnas.0605843103 [e]
- Provides comparative histological data on the glia-neuron ratios in prefrontal area 9L of the neocortex in 18 anthropoid primate species and on the allometric scaling of this ratio with brain size, concluding that the value in humans is well within the range allometrically expected for an anthropoid primate with our brain size.
- Gomez, J.C. (2005), "Species comparative studies and cognitive development", Trends Cogn Sci 9 (3): 118–125, DOI:10.1016/j.tics.2005.01.004 [e]
- Roth, G.; Dicke, U. (2005). "Evolution of the brain and intelligence". Trends in Cognitive Sciences 9 (5): 250-257. DOI:10.1016/j.tics.2005.03.005. Research Blogging. [e]
- Carroll, S.B. (2005). "Evolution at two levels: on genes and form". PLoS Biol 3 (7): e245. DOI:10.1371/journal.pbio.0030245. Research Blogging.
- Jarvis, E.D.; Güntürkün, O.; Bruce, L.; Csillag, A.; Karten, H.; Kuenzel, W.; Medina, L.; Paxinos, G.; Perkel, D.J.; Shimizu, T.; Others, (2005). "Avian brains and a new understanding of vertebrate brain evolution". Nature Reviews Neuroscience 6: 151-159. DOI:10.1038/nrn1606. Research Blogging.
- Reiner, A. (2005). "A new avian brain nomenclature: Why, how and what". Brain Research Bulletin 66 (4-6): 317-331. DOI:10.1016/j.brainresbull.2005.05.007. Research Blogging.
- Bush, E.C.; Allman, J.M. (2003), "The Scaling of White Matter to Gray Matter in Cerebellum and Neocortex", Brain Behav Evol 61 (1): 1–5, DOI:10.1159/000068880
- Aboitiz, F.; J. Montiel & J. López (2002), "Critical steps in the early evolution of the isocortex: Insights from developmental biology", Brazilian Journal of Medical and Biological Research 35: 1455–1472, DOI:10.1590/S0100-879X2002001200006 [e]
- Harrison, K.H.; Hof, P.R.; Wang, S.S. (2002), "Scaling laws in the mammalian neocortex: Does form provide clues to function?", J Neurocytol 31 (3-5): 289–98, DOI:10.1023/A:1024178127195 [e]
- Marino, L. (2002), "Convergence of complex cognitive abilities in cetaceans and primates", Brain, behavior and evolution 59 (1-2): 21-32, DOI:10.1159/000063731 [e]
- Menzel, R. & M. Giurfa (2001), "Cognitive architecture of a mini-brain: the honeybee", Trends in Cognitive Sciences 5 (2): 62–71, DOI:10.1016/S1364-6613(00)01601-6 [e]
- Clark, D.A.; P.P. Mitra & S.S. Wang (2001), "Scalable architecture in mammalian brains", Nature 411 (6834): 189–93, DOI:10.1038/35075564 [e]
"...among quantitative brain parameters examined to date, only the cerebrotype provides a measure of architecture that correlates with date of divergence of advanced primates."
- Changizi, M.A. (2001), "Principles underlying mammalian neocortical scaling", Biol Cybern 84 (3): 207–15, DOI:10.1007/s004220000205
- Supèr, H.; Uylings, H.B.M. (2001), "The Early Differentiation of the Neocortex: a Hypothesis on Neocortical Evolution", Cerebral Cortex 11 (12): 1101–1109, DOI:10.1093/cercor/11.12.1101
- Katz, P.S. & R.M. Harris-Warrick (1999), "The evolution of neuronal circuits underlying species-specific behavior", Current Opinion in Neurobiology 9 (5): 628–633, DOI:10.1016/S0959-4388(99)00012-4 [e]
- Rilling, J.K. & T.R. Insel (1999), "The primate neocortex in comparative perspective using magnetic resonance imaging", Journal of Human Evolution 37 (2): 191–223, DOI:10.1006/jhev.1999.0313 [e]
- Kornack, David R. & Pasko Rakic (1998), "Changes in cell-cycle kinetics during the development and evolution of primate neocortex", Proceedings of the National Academy of Sciences of the United States of America 95 (3): 1242–1246, DOI:10.1073/pnas.95.3.1242 [e]
In comparison to rodents, "...substantially more total rounds of cell division elapsed during the prolonged neurogenetic period of the monkey cortex, providing a basis for increased cell production."
- Henneberg, M. (1998), "Evolution of the Human Brain: is Bigger Better?", Clinical and Experimental Pharmacology and Physiology 25 (9): 745–749, DOI:10.1111/j.1440-1681.1998.tb02289.x [e]
- Ridley, Mark (1995), "Pelvic sexual dimorphism and relative neonatal brain size really are related", American Journal of Physical Anthropology 97: 197-200, DOI:10.1002/ajpa.1330970209 [e]
- Aiello, L.C. & P. Wheeler (1995), "The Expensive-Tissue Hypothesis: the Brain and the Digestive System in Human and Primate Evolution", Current Anthropology 36 (2): 199-221, DOI:10.1086/204350 [e]
- Proposed that the energetic costs of the resting metabolism of different organs within the body have to be balanced. Specifically, such a trade-off is hypothesized to have governed the increasing brain size during primate and human evolution, in concert with a decrease in the amount of digestive tissue. For a critique, see Hladik et al. (1999).
- Kaas, J.H. (1989), "The evolution of complex sensory systems in mammals", Journal of Experimental Biology 146 (1): 165–176
- Frank, E. & P. Wenner (1993), "Environmental specification of neuronal connectivity", Neuron 10 (5): 779–785, DOI:10.1016/0896-6273(93)90194-V [e]
- Deacon, Terrence W. (1990), "Rethinking Mammalian Brain Evolution", American Zoologist 30 (3): 629, DOI:10.1093/icb/30.3.629 [e]
- Jackson, J. Hughlings (1887), "Remarks on Evolution and Dissolution of the Nervous System", The British Journal of Psychiatry 33 (141): 25-48, DOI:10.1192/bjp.33.141.25