Spectral sequence: Difference between revisions
Jump to navigation
Jump to search
imported>Giovanni Antonio DiMatteo (adding enough to keep the page alive!) |
imported>David E. Volk m (subpages, cleanup) |
||
(4 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
Spectral sequences were invented by [[Jean Leray]] as an approach to computing sheaf cohomology. | {{subpages}} | ||
'''Spectral sequences''' were invented by [[Jean Leray]] as an approach to computing sheaf cohomology. | |||
==Historical development== | ==Historical development== | ||
Line 8: | Line 9: | ||
#A family <math>\{E_r^{pq}\}</math> of objects of <math>A</math> defined for all integers <math>p,q</math> and <math>r\geq a</math> | #A family <math>\{E_r^{pq}\}</math> of objects of <math>A</math> defined for all integers <math>p,q</math> and <math>r\geq a</math> | ||
#Morphisms <math>d_r^{pq}:E_r^{pq}\to E_r^{p+r,q-r+1}</math> that are differentials in the sense that <math>d_r\circ d_r=0</math>, so that the lines of "slope" <math>-r/(r+1)</math> in the lattice <math>E_r^{**}</math> form chain complexes (we say the differentials "go to the right") | #Morphisms <math>d_r^{pq}:E_r^{pq}\to E_r^{p+r,q-r+1}</math> that are differentials in the sense that <math>d_r\circ d_r=0</math>, so that the lines of "slope" <math>-r/(r+1)</math> in the lattice <math>E_r^{**}</math> form chain complexes (we say the differentials "go to the right") | ||
#Isomorphisms between <math>E_{r+1}^{pq}</math> and the homology of <math>E_r^{**}</math> at the spot <math>E_r^{pq}</math>: | #Isomorphisms between <math>E_{r+1}^{pq}</math> and the homology of <math>E_r^{**}</math> at the spot <math>E_r^{pq}</math>: | ||
:<math>E_{r+1}^{pq}\simeq \ker(d_r^{pq})/\text{image}(d_r^{p-r,q+r+1})</math> | :<math>E_{r+1}^{pq}\simeq \ker(d_r^{pq})/\text{image}(d_r^{p-r,q+r+1})</math> | ||
==Convergence== | ==Convergence== | ||
==Examples== | ==Examples== | ||
#The Leray spectral sequence | #The [[Leray spectral sequence]] | ||
#The Grothendieck spectral sequence | #The [[Grothendieck spectral sequence]] |
Latest revision as of 16:10, 21 January 2008
Spectral sequences were invented by Jean Leray as an approach to computing sheaf cohomology.
Historical development
Definition
A (cohomology) spectral sequence (starting at ) in an abelian category consists of the following data:
- A family of objects of defined for all integers and
- Morphisms that are differentials in the sense that , so that the lines of "slope" in the lattice form chain complexes (we say the differentials "go to the right")
- Isomorphisms between and the homology of at the spot :