Distribution (mathematics): Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Aleksander Stos
(bad, bad norm; it's more delicate; better to get around it)
mNo edit summary
 
(30 intermediate revisions by 6 users not shown)
Line 1: Line 1:
'''Distributions''' (also known as '''generalized functions''') are mathematical objects that are important in physics and engineering where many non-continuous problems are formulated in terms of distributions. An important example is the Dirac delta function. Dirac's intuitive ideas were placed on firm mathematical footing by S. L. Sobolev in 1936, who studied the uniqueness of solutions of the Cauchy problem for linear hyperbolic equations. In 1950 Laurent Schwartz published his ''Théorie des Distributions''. In this book he systematizes the theory of generalized functions unifying all earlier approaches and extending the results.
{{subpages}}
'''Distributions''' (or '''generalized functions''') are mathematical objects that allow the extension of the concept of the [[derivative]] to a much larger class of (not necessarily continuous) functions.  Many classical calculus tools, such as [[convolution (mathematics)|convolution]] or [[Fourier transform]], can be defined for distributions and, more importantly, the theory of [[differential equation]]s can be developed. This provides the theoretical background for many important non-continuous problems in physics and engineering. In fact, engineers and physicists performed computations using distributions even before the complete  mathematical theory was formulated. Using a few properties of otherwise mysterious objects they were able to find the right answers to some practical problems. Now, the spaces of distributions, called [[Sobolev spaces]], are a fundamental concept both in theoretical and applied sciences.


The physicist's  definition of the Dirac delta function  
A well known example of a distribution is the [[Dirac delta distribution|Dirac delta]]. In physics, it may represent a mass distribution (a useful idealization). In signal theory and engineering it is used as an approximate (idealised) model for an "impulse" or "flash" signal: a very short and strong excitation of an electrical circuit. In mathematics, it can be thought of as of the "derivative" of the [[Heaviside function]], a function that is constant everywhere, but makes the unit jump at ''x'' = 0. Obviously, if the "derivative" is understood in the classical way as the rate of change, it is ''infinite'' at this point (formally, the Heaviside function is ''not'' differentiable).
 
A widely used intuitive description of the Dirac delta  reads "this is a function that is equal to zero everywhere except for ''x'' = 0; the integral of this function is equal to 1".
Strictly speaking,  these two intuitive properties are ''contradictory''. It does not matter what value is put at ''x'' = 0, the integral of such a function will always be equal to zero. Moreover, if one puts  "<math>\scriptstyle\infty</math>", as it is often stipulated, then a serious problem arises in applications. For instance, when one deals with signals represented as &delta;  and  2&delta;  say, how can one make a practical difference between <math>\scriptstyle\infty</math> and <math>\scriptstyle 2\, \infty</math>? Definitely, Dirac's delta is ''not'' a usual function (strictly speaking, it is not defined on the real line) and a rigorous mathematical background for such an object is therefore essential.
 
Dirac's intuitive ideas were placed on firm mathematical footing by S. L. Sobolev in 1936, who studied the uniqueness of solutions of the Cauchy problem for linear hyperbolic equations. In 1950 Laurent Schwartz published his ''Théorie des Distributions''. In this book he systematizes the theory of generalized functions unifying all earlier approaches and extending the results.
 
Nowadays, the physicist's  definition of the Dirac delta function  
:<math>
:<math>
\int_{-\infty}^{\infty} \, \delta(x-x_0) \phi(x)\, dx = \phi(x_0),
\int_{-\infty}^{\infty} \, \delta(x-x_0) \phi(x)\, dx = \phi(x_0),
</math>
</math>
is recognized by the mathematician as a [[linear functional]] acting on a "well-behaved" ''test function'' &phi;(''x'').  
is recognized by the mathematician as a [[linear functional]] acting on a set of "well-behaved" ''test functions'' &phi;(''x'').  


In order to generalize this, the concept of "test functions" is needed.  Let the set ''K''  consist of all real functions &phi;(''x'') with continuous derivatives of all orders and bounded [[support (mathematics)|support]]. This means that the function &phi;(''x'') vanishes outside some bounded region, which may differ for different functions. The set ''K'' is the ''space of test functions''. It can be shown that ''K'' is a  [[vector space|linear space]]. <!--  Notice that this [[norm (mathematics)|norm]] defines a metric on ''K''. For simplicity we give the expression for the norm only when the underlying space is the real line
In order to understand and generalize this, the concept of "test functions" is needed.  Let the set ''K''  consist of all real functions &phi;(''x'') with continuous derivatives of all orders and bounded [[support (mathematics)|support]]. This means that the function &phi;(''x'') vanishes outside some bounded region, which may differ for different functions. The set ''K'' is the ''space of test functions''. It can be shown that ''K'' is a  [[vector space|linear space]].
:<math> ||f||=\sup_{x\in\mathbb{R},\;n\in\mathbb{N}} \big|\frac{d^nf}{dx^n}(x)\big|.</math>
-->


Secondly, the concept of linear functional is needed. We call ''f'' a continuous linear functional on ''K'', if ''f'' maps all elements of ''K'' onto a real number <math>\scriptstyle (f, \phi)\,</math> such that
Secondly, the concept of linear functional is needed. We call ''f'' a continuous linear functional on ''K'', if ''f'' maps all elements of ''K'' onto a real number (''f'', &phi;) such that


(i). For any two real numbers <math>\scriptstyle \alpha_1\,</math> and <math>\scriptstyle \alpha_2\,</math> and any two functions in ''K'', <math>\scriptstyle \phi_1(x)\,</math> and <math>\scriptstyle \phi_2(x)\,</math>, we have linearity
(i). For any two real numbers &alpha;<sub>1</sub> and &alpha;<sub>2</sub> and any two functions in ''K'', &phi;<sub>1</sub> and &phi;<sub>2</sub>, we have linearity
::<math>\, (f,\alpha_1 \phi_1 + \alpha_2 \phi_2) = \alpha_1 (f,\phi_1) + \alpha_2 (f, \phi_2)
::<math>\, (f,\alpha_1 \phi_1 + \alpha_2 \phi_2) = \alpha_1 (f,\phi_1) + \alpha_2 (f, \phi_2)
</math>
</math>


(ii). ''Continuity''. If the sequence <math>\,\scriptstyle \phi_1, \phi_2, \ldots, \phi_\nu,\ldots </math>
(ii). If the sequence &phi;<sub>1</sub>, &phi;<sub>2</sub>, &hellip; &phi;<sub>&nu;</sub>, &hellip;
converges uniformly to zero in ''K'', then  
converges to zero in ''K'' (i.e. functions &phi;<sub>''i''</sub> have support contained in a common compact set ''A'' and the functions and their derivatives converge to 0 in the supremum norm) then  
::<math> (f,\phi_1), (f, \phi_2), \ldots, (f,\phi_\nu), \ldots
::<math> (f,\phi_1), (f, \phi_2), \ldots, (f,\phi_\nu), \ldots
</math>
</math>
converges to zero (continuity of ''f'').
converges to zero (this is continuity of ''f'').  
 
Equivalently, the functional ''f'' on ''K'' is continuous if for any compact set
A distribution (generalized function) is defined as any linear continuous functional on K.
''A'' &sub; ℝ there exist  a  ''c''  &isin; ℝ and a ''k'' &isin; ℕ
such that for any test function &phi; with  support in ''A''
:<math> (f,\phi) \le c \sup_{i \le k,\;x\in A} \left| \frac{d^i}{dx^i}\phi(x)\right|.</math>
<!--Here <math>\scriptstyle\alpha</math> denotes a [[multi-index]] and <math>\scriptstyle D^\alpha</math> is usual [[partial derivative]] described by <math>\scriptstyle\alpha.</math> -->


[[Category:CZ Live]]
A distribution (generalized function) is defined as any linear continuous functional on K.[[Category:Suggestion Bot Tag]]
[[Category: Stub Articles]]
[[Category: Physics Workgroup]]
[[Category: Mathematics Workgroup]]

Latest revision as of 17:01, 7 August 2024

This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

Distributions (or generalized functions) are mathematical objects that allow the extension of the concept of the derivative to a much larger class of (not necessarily continuous) functions. Many classical calculus tools, such as convolution or Fourier transform, can be defined for distributions and, more importantly, the theory of differential equations can be developed. This provides the theoretical background for many important non-continuous problems in physics and engineering. In fact, engineers and physicists performed computations using distributions even before the complete mathematical theory was formulated. Using a few properties of otherwise mysterious objects they were able to find the right answers to some practical problems. Now, the spaces of distributions, called Sobolev spaces, are a fundamental concept both in theoretical and applied sciences.

A well known example of a distribution is the Dirac delta. In physics, it may represent a mass distribution (a useful idealization). In signal theory and engineering it is used as an approximate (idealised) model for an "impulse" or "flash" signal: a very short and strong excitation of an electrical circuit. In mathematics, it can be thought of as of the "derivative" of the Heaviside function, a function that is constant everywhere, but makes the unit jump at x = 0. Obviously, if the "derivative" is understood in the classical way as the rate of change, it is infinite at this point (formally, the Heaviside function is not differentiable).

A widely used intuitive description of the Dirac delta reads "this is a function that is equal to zero everywhere except for x = 0; the integral of this function is equal to 1". Strictly speaking, these two intuitive properties are contradictory. It does not matter what value is put at x = 0, the integral of such a function will always be equal to zero. Moreover, if one puts "", as it is often stipulated, then a serious problem arises in applications. For instance, when one deals with signals represented as δ and 2δ say, how can one make a practical difference between and ? Definitely, Dirac's delta is not a usual function (strictly speaking, it is not defined on the real line) and a rigorous mathematical background for such an object is therefore essential.

Dirac's intuitive ideas were placed on firm mathematical footing by S. L. Sobolev in 1936, who studied the uniqueness of solutions of the Cauchy problem for linear hyperbolic equations. In 1950 Laurent Schwartz published his Théorie des Distributions. In this book he systematizes the theory of generalized functions unifying all earlier approaches and extending the results.

Nowadays, the physicist's definition of the Dirac delta function

is recognized by the mathematician as a linear functional acting on a set of "well-behaved" test functions φ(x).

In order to understand and generalize this, the concept of "test functions" is needed. Let the set K consist of all real functions φ(x) with continuous derivatives of all orders and bounded support. This means that the function φ(x) vanishes outside some bounded region, which may differ for different functions. The set K is the space of test functions. It can be shown that K is a linear space.

Secondly, the concept of linear functional is needed. We call f a continuous linear functional on K, if f maps all elements of K onto a real number (f, φ) such that

(i). For any two real numbers α1 and α2 and any two functions in K, φ1 and φ2, we have linearity

(ii). If the sequence φ1, φ2, … φν, … converges to zero in K (i.e. functions φi have support contained in a common compact set A and the functions and their derivatives converge to 0 in the supremum norm) then

converges to zero (this is continuity of f). Equivalently, the functional f on K is continuous if for any compact set A ⊂ ℝ there exist a c ∈ ℝ and a k ∈ ℕ such that for any test function φ with support in A

A distribution (generalized function) is defined as any linear continuous functional on K.