Moon: Difference between revisions
imported>Milton Beychok m (→Tidal locking: Wiki links and a minor copy edit) |
mNo edit summary |
||
(10 intermediate revisions by 3 users not shown) | |||
Line 5: | Line 5: | ||
{|class=wikitable align=right style="border: 2px solid gray; font-size: 90%;" | {|class=wikitable align=right style="border: 2px solid gray; font-size: 90%;" | ||
|- | |- | ||
|+Earth's Moon: Facts & Figures<ref | |+Earth's Moon: Facts & Figures<ref name=MoonPhoto/><ref name=FactSheet/> | ||
|colspan=2 align=center|{{Image|Full Moon.jpg|center|255px|A Full Moon, as seen from [[Earth]].}} | |colspan=2 align=center|{{Image|Full Moon.jpg|center|255px|A Full Moon, as seen from [[Earth]].}} | ||
|- | |- | ||
Line 48: | Line 48: | ||
|} | |} | ||
A '''moon''' is a naturally-occurring [[satellite]] that is in [[orbit]] around a [[planet]]. ''The'' moon refers to planet [[Earth (planet)|Earth]]'s only naturally satellite, which due to its illumination by the sun, is visible in the sky on clear nights in varying amounts of fullness. The [[Ancient Romans|Romans]] called the Moon ''Luna'' and the adjective 'lunar' is still used to describe things related to the Moon. | |||
The | The Earth's moon moves around the planet at a distance of 384,400 [[kilometer|km]] (238855 mi). With a diameter of 3476 km and mass of 7.35×10<sup>22</sup> [[kilogram|kg]], the Moon is larger than any other satellite orbiting the other [[planet]]s of the [[Solar System]]. | ||
As the Moon orbits the Earth, different amounts of reflected sunlight from its surface are visible, and at differing times of day/night in different parts of the sky<ref name=TheMoonTonight />. This makes it appear as though it is changing shape throughout the month. When the Moon is almost directly between the Earth and the Sun, little or no illuminated lunar surface is visible. This is known as a New Moon. As it moves round, an arc of illuminated surface becomes visible, known as a Crescent Moon, a 'waxing' (growing) crescent. The width of the crescent gradually increases until, when the Moon is a quarter of the way round its orbit, a full semi-circle is visible, a Half Moon. This gradually gets rounder. This is known as a waxing gibbous. When the Sun and Moon are on opposite sides of the Earth, the Moon appears as a complete disc: this is called the Full Moon. It is at this time that its [[light]] reaching Earth is at its greatest. The Moon continues on its orbit, gradually narrowing through a waning gibbous, and again to half, then to a waning crescent before completing the cycle of phases, and becoming a New Moon again. | |||
[[Human]]s have often dreamed of traveling to the Moon. During the [[twentieth century]], that dream became a reality. The [[Soviet Union]] was the first nation to send a space craft to the Moon. ''[[Luna 2]]'' impacted the Moon's surface in 1959. The first photographs of the far side of the Moon were taken by ''[[Luna 3]]'', another Soviet craft, later that same year. The American [[Apollo program]] achieved a series of manned missions that landed on the Moon and subsequently returned to Earth. The first men, [[Neil Armstrong]] and [[Edwin Aldrin|'Buzz' Aldrin]], landed on the Moon on July 20, 1969 as part of [[Apollo 11]]. Several other manned Apollo missions followed with the last, Apollo 17, reaching the Moon on December 11, 1972. In total, 12 men have walked on the Moon. | [[Human]]s have often dreamed of traveling to the Moon. During the [[twentieth century]], that dream became a reality. The [[Soviet Union]] was the first nation to send a space craft to the Moon. ''[[Luna 2]]'' impacted the Moon's surface in 1959. The first photographs of the far side of the Moon were taken by ''[[Luna 3]]'', another Soviet craft, later that same year. The American [[Apollo program]] achieved a series of manned missions that landed on the Moon and subsequently returned to Earth. The first men, [[Neil Armstrong]] and [[Edwin Aldrin|'Buzz' Aldrin]], landed on the Moon on July 20, 1969 as part of [[Apollo 11]]. Several other manned Apollo missions followed with the last, Apollo 17, reaching the Moon on December 11, 1972. In total, 12 men have walked on the Moon. | ||
Line 57: | Line 59: | ||
===Lunar declination=== | ===Lunar declination=== | ||
The Moon's orbit is elliptical and not circular. It passes closest to Earth at its [[perigee]] and furthest at its [[apogee]]. The Moon does not orbit around the Earth’s equator. The Moon's declination effect (change in angle with respect to the equator) means its orbit is offset from the Earth's equator, orbiting at 5 degrees above and below the [[plane of the ecliptic]], an inclination from the Earth's equator ranging 18.3° and 28.6° over a period of 18.61 years during Earth's orbit around the Sun. The plane of the ecliptic in turn is itself about 23 degrees from the plane of the Earth's equator.<ref | The Moon's orbit is elliptical and not circular. It passes closest to Earth at its [[perigee]] and furthest at its [[apogee]]. The Moon does not orbit around the Earth’s equator. The Moon's declination effect (change in angle with respect to the equator) means its orbit is offset from the Earth's equator, orbiting at 5 degrees above and below the [[plane of the ecliptic]], an inclination from the Earth's equator ranging 18.3° and 28.6° over a period of 18.61 years during Earth's orbit around the Sun. The plane of the ecliptic in turn is itself about 23 degrees from the plane of the Earth's equator.<ref name=RestlessTides/><ref name=BeringSea/> | ||
===Orbital periods=== | ===Orbital periods=== | ||
The Moon’s orbit around the Earth has two different periods. The Moon’s [[sidereal period]] of about 27.3 days is its orbit around the Earth measured by comparison of the Moon’s motion to the fixed stars. The Moon’s [[synodic period]], viewed from Earth as the phases of the Moon, is the Moon’s orbit around the Earth with respect to the Sun. The synodic, a period of approximately 29.5 days, is longer than the sidereal period because the Earth is moving while the Moon orbits around the Earth. In other words, a New Moon does not appear every 27.3 days, it appears every 29.5 days even though the Moon has already completed an orbit around the Earth more than two days earlier. In the period of one 365-day Earth [[sidereal year]]<ref | The Moon’s orbit around the Earth has two different periods. The Moon’s [[sidereal period]] of about 27.3 days is its orbit around the Earth measured by comparison of the Moon’s motion to the fixed stars. The Moon’s [[synodic period]], viewed from Earth as the phases of the Moon, is the Moon’s orbit around the Earth with respect to the Sun. The synodic, a period of approximately 29.5 days, is longer than the sidereal period because the Earth is moving while the Moon orbits around the Earth. In other words, a New Moon does not appear every 27.3 days, it appears every 29.5 days even though the Moon has already completed an orbit around the Earth more than two days earlier. In the period of one 365-day Earth [[sidereal year]]<ref name=Note/> the Moon completes approximately 13.4 sidereal periods and 12.4 synodic periods. This is why it is possible to have more than one new Moon a month on the modern calendar.<ref name=Dutch/><ref name=Spudis/> | ||
===Gravitational effects the Earth and Moon exert on each other=== | ===Gravitational effects the Earth and Moon exert on each other=== | ||
The Moon’s orbit is getting larger, increasing by about 3.8 centimetres per year.<ref | The Moon’s orbit is getting larger, increasing by about 3.8 centimetres per year.<ref name=Note2/> The Moon’s rotation has slowed to the point that it presents only one face toward the Earth. The Earth’s rotational period is slowing down by about 2 milliseconds every 100 years. These are all due to the mutual gravitational effects between the Earth and the Moon. | ||
The Moon’s gravitational effect raises tides on Earth displacing the Earth’s water outward by meters (about 1 meter in the open ocean and as high as 18 meters in coastal waters as takes place in the Bay of Fundy) and its solid surface by about 30 centimetres. This is called a [[tidal bulge]]: | The Moon’s gravitational effect raises tides on Earth displacing the Earth’s water outward by meters (about 1 meter in the open ocean and as high as 18 meters in coastal waters as takes place in the Bay of Fundy) and its solid surface by about 30 centimetres. This is called a [[tidal bulge]]: | ||
In addition to this lunar tidal effect, the Earth’s rotation on its axis has a greater effect on this bulging configuration and the diameter of the Earth at the Equator, [[equatorial bulging]], is about 23 | In addition to this lunar tidal effect, the Earth’s rotation on its axis has a greater effect on this bulging configuration and the diameter of the Earth at the Equator, [[equatorial bulging]], is about 23 [[kilometer]]s, (about 0.4% of the Earth's radius) higher than it would be if the Earth did not rotate. | ||
Since the centre of gravity for the Moon’s orbit around Earth, the [[barycenter]],<ref | Since the centre of gravity for the Moon’s orbit around Earth, the [[barycenter]],<ref name=Barycenter/> is not the centre of gravity for the Earth, as the Earth bulges outward, this barycenter or shared centre of gravity around which the Moon orbits actually extends further from the Earth’s centre of gravity. | ||
The Earth’s rotation (approximately once every 24 hours) has the effect of exerting a force on the Moon’s orbital period around the Earth (once every 27.3 days). Because of the Earth’s rotation, tidal bulge actually precedes the Moon by about 3 degrees, which exerts gravitational forces to pull the Moon forward in its orbit. This increases the Moon’s energy to resist Earth’s gravitational pull and allows the Moon to move away from the Earth and increase its orbit, a phenomenon referred to as [[lunar recession]]. As the Moon’s orbit increases its orbital period decreases and slows it down. | The Earth’s rotation (approximately once every 24 hours) has the effect of exerting a force on the Moon’s orbital period around the Earth (once every 27.3 days). Because of the Earth’s rotation, tidal bulge actually precedes the Moon by about 3 degrees, which exerts gravitational forces to pull the Moon forward in its orbit. This increases the Moon’s energy to resist Earth’s gravitational pull and allows the Moon to move away from the Earth and increase its orbit, a phenomenon referred to as [[lunar recession]]. As the Moon’s orbit increases its orbital period decreases and slows it down. | ||
Line 77: | Line 79: | ||
This lunar tide dissipation is not a steady rate of change however. The amount of water being pulled in the tidal bulge, the depth of the water, the size and presence of ice shelves, the position and size of the ancient continents which may have altered the path of the tidal bulge would all have varying effects on the amount of energy loss taking place and the eventual changes in the Moon's orbit and the Earth's rotation. | This lunar tide dissipation is not a steady rate of change however. The amount of water being pulled in the tidal bulge, the depth of the water, the size and presence of ice shelves, the position and size of the ancient continents which may have altered the path of the tidal bulge would all have varying effects on the amount of energy loss taking place and the eventual changes in the Moon's orbit and the Earth's rotation. | ||
<ref name=Multiple | <ref name=Multiple/><ref name=Multiple2/><ref name=Multiple3/> | ||
The Moon is generating vast amounts of energy on the Earth's surface as it generates the tidal bulge. The lunar tides dissipate about 3.3 to 4 t[[Watt (unit)|W]] of energy (3.3 to 4 × 10<sup>12</sup> [[Watt (unit)|watts]]) in the Earth's oceans.<ref name= | The Moon is generating vast amounts of energy on the Earth's surface as it generates the tidal bulge. The lunar tides dissipate about 3.3 to 4 t[[Watt (unit)|W]] of energy (3.3 to 4 × 10<sup>12</sup> [[Watt (unit)|watts]]) in the Earth's oceans.<ref name=Multiple3/> | ||
====Tidal locking==== | ====Tidal locking==== | ||
So the resultant ‘tidal friction’ of this mutual gravitational effect of the Moon and the Earth takes energy out of the Earth pulling it into the Moon’s orbit, and increases the Moon’s orbital diameter while slowing the moon’s orbit around the Earth. The slowing effect of the tidal friction would have taken place in the space of billions<ref | So the resultant ‘tidal friction’ of this mutual gravitational effect of the Moon and the Earth takes energy out of the Earth pulling it into the Moon’s orbit, and increases the Moon’s orbital diameter while slowing the moon’s orbit around the Earth. The slowing effect of the tidal friction would have taken place in the space of billions<ref name =NoteBillion/> of years with the result that the Moon eventually slowed so much that it now keeps the same side toward the Earth today, a phenomenon called “tidal locking”. | ||
Tidal locking will also happen on Earth. If the tidal friction continues unabated, the length of a day on Earth and the Moon’s orbital period will equalize at about 55 days. Then the Earth will always face the Moon on the same side just as we now only see one side of the Moon. The tidal bulge leading the Moon today will point directly at the Moon and the Moon will no longer move away from the Earth. | Tidal locking will also happen on Earth. If the tidal friction continues unabated, the length of a day on Earth and the Moon’s orbital period will equalize at about 55 days. Then the Earth will always face the Moon on the same side just as we now only see one side of the Moon. The tidal bulge leading the Moon today will point directly at the Moon and the Moon will no longer move away from the Earth. | ||
Line 91: | Line 93: | ||
Tidal [[Friction (science)|friction]] is measured in several ways. | Tidal [[Friction (science)|friction]] is measured in several ways. | ||
The length of the lunar month can be measured by measuring the thickness of tidal deposits, “tidal rhythmites”, preserved in the Earth’s rock layers over billions of years although the measurements currently cover only about 900 million years. The resultant studies have shown the tidal layers correspond to increases in the lunar month, hence a slowing of the lunar orbit. This rate of change has remained nearly unchanged.<ref name= | The length of the lunar month can be measured by measuring the thickness of tidal deposits, “tidal rhythmites”, preserved in the Earth’s rock layers over billions of years although the measurements currently cover only about 900 million years. The resultant studies have shown the tidal layers correspond to increases in the lunar month, hence a slowing of the lunar orbit. This rate of change has remained nearly unchanged.<ref name=Multiple4/><ref name=Multiple/> | ||
The Earth’s rotational period has also been measured by bouncing laser beams off reflectors placed on the Moon’s surface by Apollo astronauts. These studies show increases in the Moon’s orbit.<ref name=Multiple/><ref | The Earth’s rotational period has also been measured by bouncing laser beams off reflectors placed on the Moon’s surface by Apollo astronauts. These studies show increases in the Moon’s orbit.<ref name=Multiple/><ref name=Runneger/> | ||
Another way to study the phenomenon of tidal friction is to measure the change in the rotational period of the Earth. Very Long Baseline Interferometry studies utilising many radio telescopes on the Earth’s surface to study the positions of the quasars have shown that over time very accurate measures of the rotational period of the Earth show that the Earth’s rotation is in fact slowing down. <ref name=Multiple/> | Another way to study the phenomenon of tidal friction is to measure the change in the rotational period of the Earth. Very Long Baseline Interferometry studies utilising many radio telescopes on the Earth’s surface to study the positions of the quasars have shown that over time very accurate measures of the rotational period of the Earth show that the Earth’s rotation is in fact slowing down. <ref name=Multiple/> | ||
Line 109: | Line 111: | ||
====Climate change==== | ====Climate change==== | ||
There is increasing evidence that also implicates the lunar tides in climate change. The energy of the lunar tides was long thought to dissipate in the surface water of the oceans. However, since the late 90s, studies using Topex/Poseidon satellite altimeter data to measure changes worldwide have shown that the lowest depths of the ocean are stirred by lunar tides, mixing the cold water of the oceans depths with the warmer waters of the surface and affecting ocean currents and global temperatures. Massive currents that sweep across the surface of the Earth's oceans and those that sweep through the abyssal plains together comprise the [[thermohaline circulation]] or [[oceanic conveyor belt system]], changing ocean temperature, and salinity worldwide.<ref | There is increasing evidence that also implicates the lunar tides in climate change. The energy of the lunar tides was long thought to dissipate in the surface water of the oceans. However, since the late 90s, studies using Topex/Poseidon satellite altimeter data to measure changes worldwide have shown that the lowest depths of the ocean are stirred by lunar tides, mixing the cold water of the oceans depths with the warmer waters of the surface and affecting ocean currents and global temperatures. Massive currents that sweep across the surface of the Earth's oceans and those that sweep through the abyssal plains together comprise the [[thermohaline circulation]] or [[oceanic conveyor belt system]], changing ocean temperature, and salinity worldwide.<ref name=Climate/><ref name=Multiple3/> | ||
==References== | ==References== | ||
< | |||
< | {{Reflist|refs= | ||
</ | |||
<ref name=TheMoonTonight> | |||
''The Moon Tonight: Our Moon's Journey Around Earth'' by Jung Chang-hoon, picture book, 2023, Blue Dot Kids Press, 36 pp, describes when and where each phase of the moon can be seen in the day and night sky. ISBN 978-1737603252 | |||
</ref> | |||
<ref name=MoonPhoto>[http://solarsystem.nasa.gov/planets/profile.cfm?Object=Moon&Display=Facts Solar System Exploration: Earth's Moon: Facts & Figures] From website of the [[National Aeronautics and Space Administration]] (NASA)</ref> | |||
<ref name=FactSheet>[http://nssdc.gsfc.nasa.gov/planetary/factsheet/moonfact.html Moon Fact Sheet] From website of the National Aeronautics and Space Administration (NASA)</ref> | |||
<ref name=RestlessTides>[http://co-ops.nos.noaa.gov/restles4.html Chapter 4 of ''Our Restless Tides''] [[National Oceanic and Atmospheric Administration]] (NOAA)</ref> | |||
<ref name=BeringSea>{{cite journal| author=M. G. G. Foreman, P. F. Cummins, J. Y. Cherniawsky and Phyllis Stabeno |title=Tidal energy in the Bering Sea|journal=Journal of Marine Research| volume=64| issue=| pages=p.p. 797-818|date=2006|id=|url=}}</ref> | |||
<ref name=Dutch>{{cite book|author=Steven I. Dutch, James S. Monroe and Joseph M. Moran|title=Earth Science|edition=1st Edition|publisher=Wadsworth Publishing|year=1997|id=ISBN 0-314-20111-4}}</ref> | |||
<ref name=Note>'''Note:''' Earth’s orbit around the Sun to the same point with respect to the stars which takes 365 days 6 hours 9 minutes 9.54 seconds</ref> | |||
<ref name=Spudis>{{cite book|author=Paul D. Spudis|title=The Once and Future Moon|edition=|publisher=Smithsonian Library|year=1998|id=ISBN 1-56098-847-9}}</ref> | |||
<ref name=Note2>'''Note:''' This means the Moon was about 1.5 meters closer to the Earth when the astronauts first landed on the Moon</ref> | |||
<ref name=Barycenter>The barycenter is the center of gravity of the combined masses of two bodies that are in orbit, in this case the Earth and the Moon. See [http://spaceplace.nasa.gov/en/kids/barycntr.shtml Solar System] Scroll down to ''What's a barycenter'' (From NASA website)</ref> | |||
<ref name=Multiple>(a) [http://curious.astro.cornell.edu/question.php?number=124 Is the Moon moving away from the Earth? When was this discovered?] Britt Scharringhausen, Cornell University<br/>(b) [http://www.aerospaceweb.org/question/astronomy/q0262.shtml Moon, Motion and Tides] Justine Whitman, Aerospace Web.org<br/>(c) [http://www.newton.dep.anl.gov/askasci/ast99/ast99657.htm Degrading Orbits and Lunar Orbit Increase] Dick Plano, Rutgers University<br/>(d) [http://eclipse.gsfc.nasa.gov/SEcat5/secular.html Secular Acceleration of the Moon] From NASA website<br/>(e) [http://bowie.gsfc.nasa.gov/ggfc/tides/intro.html Ocean tides and the Earth's rotation] Richard Ray. From NASA website</ref> | |||
<ref name=Multiple2>(a) {{cite journal| author=C.P. Sonnet et al|title= Late Proterozoic and Paleozoic Tides, Retreat of the Moon, and Rotation of the Earth|journal=Science| volume=273|issue=5271| pages=pp. 100-104|date=1996|id=|url=}}<br/>(b) [http://www.astronomy.ohio-state.edu/~pogge/Ast161/Unit4/tides.html Lecture 20: Tides] Pogge, Richard, (2007) Ohio State University<br/>(c) {{cite journal| author=Kurt Lambeck|title=Effects of Tidal dissipation on the Earth's orbit and the Moon's rotation|journal=Journal of Geophysical Research|volume=80 |issue=20| pages=|date=1975|id=|url=http://rses.anu.edu.au/people/lambeck_k/pdf/34.pdf}}</ref> | |||
<ref name=Multiple3>(a) {{cite journal|author=G. D. Egbert and R. D. Ray|title=Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data|journal=Nature| volume=405| issue=15|pages=775-778|id=|url=}}<br/>(b) [http://science.nasa.gov/headlines/y2000/ast15jun_2.htm Ocean Tides Lost and Found] From NASA website.<br/>(c) {{cite journal|author=C. S. M. Dioake|title=Dissipation of tidal energy by Antarctic ice shelves|journal=Nature|volume=275|issue=28 |pages=pp.304-305}}</ref> | |||
<ref name=NoteBillion>'''Note:''' The word "billion", used anywhere in this article, denotes 10<sup>9</sup></ref> | |||
<ref name=Multiple4>(a) [http://news.bbc.co.uk/2/hi/science/nature/956126.stm Rocks reveal ancient tides] David Whitehouse (2000), BBC News online<br/>(b) [http://query.nytimes.com/gst/fullpage.html?res=990CE4DB1E39F93AA35754C0A960958260&fta=y New Gauge for Shorter Day of Past] Malcolm W. Browne, ''Science'', New York Times, July 9, 1996<br/>(c) [http://igs.indiana.edu/Geology/ancient/tidaltime/index.cfm Tidal Time: Ancient Tides Recorded in Indiana Rocks] Eric Kvale, Indiana Geological Survey</ref> | |||
<ref name=Runneger>[http://gsa.confex.com/gsa/2008AM/finalprogram/abstract_149253.htm Evolution of the Lunar Orbit] Bruce N.Runneger, University of California, Los Angeles. Presented at "2008 Joint Meeting of The Geological Society of America, Soil Science Society of America, American Society of Agronomy, Crop Science Society of America, Gulf Coast Association of Geological Societies with the Gulf Coast Section of the Society of Sedimentary Geology (SEPM)".</ref> | |||
<ref name=Climate>[http://www.co2science.org/articles/V3/N17/C1.php Lunar tides and climate change] CO2 Science: Center for the Study of Carbon Dioxide and Global Change</ref> | |||
}}[[Category:Suggestion Bot Tag]] |
Latest revision as of 06:01, 21 September 2024
|
A moon is a naturally-occurring satellite that is in orbit around a planet. The moon refers to planet Earth's only naturally satellite, which due to its illumination by the sun, is visible in the sky on clear nights in varying amounts of fullness. The Romans called the Moon Luna and the adjective 'lunar' is still used to describe things related to the Moon.
The Earth's moon moves around the planet at a distance of 384,400 km (238855 mi). With a diameter of 3476 km and mass of 7.35×1022 kg, the Moon is larger than any other satellite orbiting the other planets of the Solar System.
As the Moon orbits the Earth, different amounts of reflected sunlight from its surface are visible, and at differing times of day/night in different parts of the sky[3]. This makes it appear as though it is changing shape throughout the month. When the Moon is almost directly between the Earth and the Sun, little or no illuminated lunar surface is visible. This is known as a New Moon. As it moves round, an arc of illuminated surface becomes visible, known as a Crescent Moon, a 'waxing' (growing) crescent. The width of the crescent gradually increases until, when the Moon is a quarter of the way round its orbit, a full semi-circle is visible, a Half Moon. This gradually gets rounder. This is known as a waxing gibbous. When the Sun and Moon are on opposite sides of the Earth, the Moon appears as a complete disc: this is called the Full Moon. It is at this time that its light reaching Earth is at its greatest. The Moon continues on its orbit, gradually narrowing through a waning gibbous, and again to half, then to a waning crescent before completing the cycle of phases, and becoming a New Moon again.
Humans have often dreamed of traveling to the Moon. During the twentieth century, that dream became a reality. The Soviet Union was the first nation to send a space craft to the Moon. Luna 2 impacted the Moon's surface in 1959. The first photographs of the far side of the Moon were taken by Luna 3, another Soviet craft, later that same year. The American Apollo program achieved a series of manned missions that landed on the Moon and subsequently returned to Earth. The first men, Neil Armstrong and 'Buzz' Aldrin, landed on the Moon on July 20, 1969 as part of Apollo 11. Several other manned Apollo missions followed with the last, Apollo 17, reaching the Moon on December 11, 1972. In total, 12 men have walked on the Moon.
The Moon's orbit around the Earth
Lunar declination
The Moon's orbit is elliptical and not circular. It passes closest to Earth at its perigee and furthest at its apogee. The Moon does not orbit around the Earth’s equator. The Moon's declination effect (change in angle with respect to the equator) means its orbit is offset from the Earth's equator, orbiting at 5 degrees above and below the plane of the ecliptic, an inclination from the Earth's equator ranging 18.3° and 28.6° over a period of 18.61 years during Earth's orbit around the Sun. The plane of the ecliptic in turn is itself about 23 degrees from the plane of the Earth's equator.[4][5]
Orbital periods
The Moon’s orbit around the Earth has two different periods. The Moon’s sidereal period of about 27.3 days is its orbit around the Earth measured by comparison of the Moon’s motion to the fixed stars. The Moon’s synodic period, viewed from Earth as the phases of the Moon, is the Moon’s orbit around the Earth with respect to the Sun. The synodic, a period of approximately 29.5 days, is longer than the sidereal period because the Earth is moving while the Moon orbits around the Earth. In other words, a New Moon does not appear every 27.3 days, it appears every 29.5 days even though the Moon has already completed an orbit around the Earth more than two days earlier. In the period of one 365-day Earth sidereal year[6] the Moon completes approximately 13.4 sidereal periods and 12.4 synodic periods. This is why it is possible to have more than one new Moon a month on the modern calendar.[7][8]
Gravitational effects the Earth and Moon exert on each other
The Moon’s orbit is getting larger, increasing by about 3.8 centimetres per year.[9] The Moon’s rotation has slowed to the point that it presents only one face toward the Earth. The Earth’s rotational period is slowing down by about 2 milliseconds every 100 years. These are all due to the mutual gravitational effects between the Earth and the Moon.
The Moon’s gravitational effect raises tides on Earth displacing the Earth’s water outward by meters (about 1 meter in the open ocean and as high as 18 meters in coastal waters as takes place in the Bay of Fundy) and its solid surface by about 30 centimetres. This is called a tidal bulge:
In addition to this lunar tidal effect, the Earth’s rotation on its axis has a greater effect on this bulging configuration and the diameter of the Earth at the Equator, equatorial bulging, is about 23 kilometers, (about 0.4% of the Earth's radius) higher than it would be if the Earth did not rotate.
Since the centre of gravity for the Moon’s orbit around Earth, the barycenter,[10] is not the centre of gravity for the Earth, as the Earth bulges outward, this barycenter or shared centre of gravity around which the Moon orbits actually extends further from the Earth’s centre of gravity.
The Earth’s rotation (approximately once every 24 hours) has the effect of exerting a force on the Moon’s orbital period around the Earth (once every 27.3 days). Because of the Earth’s rotation, tidal bulge actually precedes the Moon by about 3 degrees, which exerts gravitational forces to pull the Moon forward in its orbit. This increases the Moon’s energy to resist Earth’s gravitational pull and allows the Moon to move away from the Earth and increase its orbit, a phenomenon referred to as lunar recession. As the Moon’s orbit increases its orbital period decreases and slows it down.
The Moon is also pulling back on the Earth through the phenomenon of tidal breaking caused by tidal friction on the Earth’s surface and slowing the Earth’s rotation at the rate of about 2 milliseconds every 100 years. This has a significant accumulative effect however and it is estimated that the terrestrial day about 900 million years ago was approximately 18 hours.
This lunar tide dissipation is not a steady rate of change however. The amount of water being pulled in the tidal bulge, the depth of the water, the size and presence of ice shelves, the position and size of the ancient continents which may have altered the path of the tidal bulge would all have varying effects on the amount of energy loss taking place and the eventual changes in the Moon's orbit and the Earth's rotation. [11][12][13]
The Moon is generating vast amounts of energy on the Earth's surface as it generates the tidal bulge. The lunar tides dissipate about 3.3 to 4 tW of energy (3.3 to 4 × 1012 watts) in the Earth's oceans.[13]
Tidal locking
So the resultant ‘tidal friction’ of this mutual gravitational effect of the Moon and the Earth takes energy out of the Earth pulling it into the Moon’s orbit, and increases the Moon’s orbital diameter while slowing the moon’s orbit around the Earth. The slowing effect of the tidal friction would have taken place in the space of billions[14] of years with the result that the Moon eventually slowed so much that it now keeps the same side toward the Earth today, a phenomenon called “tidal locking”.
Tidal locking will also happen on Earth. If the tidal friction continues unabated, the length of a day on Earth and the Moon’s orbital period will equalize at about 55 days. Then the Earth will always face the Moon on the same side just as we now only see one side of the Moon. The tidal bulge leading the Moon today will point directly at the Moon and the Moon will no longer move away from the Earth.
Tidal locking is a common occurrence between other bodies in the solar system. For example, the dwarf planet Pluto and its moon Charon are tidally locked.[11]
Tidal friction
Tidal friction is measured in several ways.
The length of the lunar month can be measured by measuring the thickness of tidal deposits, “tidal rhythmites”, preserved in the Earth’s rock layers over billions of years although the measurements currently cover only about 900 million years. The resultant studies have shown the tidal layers correspond to increases in the lunar month, hence a slowing of the lunar orbit. This rate of change has remained nearly unchanged.[15][11]
The Earth’s rotational period has also been measured by bouncing laser beams off reflectors placed on the Moon’s surface by Apollo astronauts. These studies show increases in the Moon’s orbit.[11][16]
Another way to study the phenomenon of tidal friction is to measure the change in the rotational period of the Earth. Very Long Baseline Interferometry studies utilising many radio telescopes on the Earth’s surface to study the positions of the quasars have shown that over time very accurate measures of the rotational period of the Earth show that the Earth’s rotation is in fact slowing down. [11]
The ultimate result
Disappearance of total solar eclipses
Sometime within the next 500 million to 1 billion years the Moon will be so far away that total solar eclipses will no longer be possible. The Moon will have moved about 5% further away of the distance it is today and the lunar disc will be too small to hide the Sun resulting only in partial solar eclipses.
A distant orb or an explosive collision
There are two alternative scenarios. Eventfully the Moon’s orbit would stabilise at about 1.6 times the distance it is today. This would take about 15 billion years.
On the other hand, as tidal locking is obtained, the Moon would lose momentum. Its orbit would then degrade and eventually it would collide with the Earth. [11]
Climate change
There is increasing evidence that also implicates the lunar tides in climate change. The energy of the lunar tides was long thought to dissipate in the surface water of the oceans. However, since the late 90s, studies using Topex/Poseidon satellite altimeter data to measure changes worldwide have shown that the lowest depths of the ocean are stirred by lunar tides, mixing the cold water of the oceans depths with the warmer waters of the surface and affecting ocean currents and global temperatures. Massive currents that sweep across the surface of the Earth's oceans and those that sweep through the abyssal plains together comprise the thermohaline circulation or oceanic conveyor belt system, changing ocean temperature, and salinity worldwide.[17][13]
References
- ↑ Solar System Exploration: Earth's Moon: Facts & Figures From website of the National Aeronautics and Space Administration (NASA)
- ↑ Moon Fact Sheet From website of the National Aeronautics and Space Administration (NASA)
- ↑ The Moon Tonight: Our Moon's Journey Around Earth by Jung Chang-hoon, picture book, 2023, Blue Dot Kids Press, 36 pp, describes when and where each phase of the moon can be seen in the day and night sky. ISBN 978-1737603252
- ↑ Chapter 4 of Our Restless Tides National Oceanic and Atmospheric Administration (NOAA)
- ↑ M. G. G. Foreman, P. F. Cummins, J. Y. Cherniawsky and Phyllis Stabeno (2006). "Tidal energy in the Bering Sea". Journal of Marine Research 64: p.p. 797-818.
- ↑ Note: Earth’s orbit around the Sun to the same point with respect to the stars which takes 365 days 6 hours 9 minutes 9.54 seconds
- ↑ Steven I. Dutch, James S. Monroe and Joseph M. Moran (1997). Earth Science, 1st Edition. Wadsworth Publishing. ISBN 0-314-20111-4.
- ↑ Paul D. Spudis (1998). The Once and Future Moon. Smithsonian Library. ISBN 1-56098-847-9.
- ↑ Note: This means the Moon was about 1.5 meters closer to the Earth when the astronauts first landed on the Moon
- ↑ The barycenter is the center of gravity of the combined masses of two bodies that are in orbit, in this case the Earth and the Moon. See Solar System Scroll down to What's a barycenter (From NASA website)
- ↑ 11.0 11.1 11.2 11.3 11.4 11.5 (a) Is the Moon moving away from the Earth? When was this discovered? Britt Scharringhausen, Cornell University
(b) Moon, Motion and Tides Justine Whitman, Aerospace Web.org
(c) Degrading Orbits and Lunar Orbit Increase Dick Plano, Rutgers University
(d) Secular Acceleration of the Moon From NASA website
(e) Ocean tides and the Earth's rotation Richard Ray. From NASA website - ↑ (a) C.P. Sonnet et al (1996). "Late Proterozoic and Paleozoic Tides, Retreat of the Moon, and Rotation of the Earth". Science 273 (5271): pp. 100-104.
(b) Lecture 20: Tides Pogge, Richard, (2007) Ohio State University
(c) Kurt Lambeck (1975). "Effects of Tidal dissipation on the Earth's orbit and the Moon's rotation". Journal of Geophysical Research 80 (20). - ↑ 13.0 13.1 13.2 (a) G. D. Egbert and R. D. Ray. "Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data". Nature 405 (15): 775-778.
(b) Ocean Tides Lost and Found From NASA website.
(c) C. S. M. Dioake. "Dissipation of tidal energy by Antarctic ice shelves". Nature 275 (28): pp.304-305. - ↑ Note: The word "billion", used anywhere in this article, denotes 109
- ↑ (a) Rocks reveal ancient tides David Whitehouse (2000), BBC News online
(b) New Gauge for Shorter Day of Past Malcolm W. Browne, Science, New York Times, July 9, 1996
(c) Tidal Time: Ancient Tides Recorded in Indiana Rocks Eric Kvale, Indiana Geological Survey - ↑ Evolution of the Lunar Orbit Bruce N.Runneger, University of California, Los Angeles. Presented at "2008 Joint Meeting of The Geological Society of America, Soil Science Society of America, American Society of Agronomy, Crop Science Society of America, Gulf Coast Association of Geological Societies with the Gulf Coast Section of the Society of Sedimentary Geology (SEPM)".
- ↑ Lunar tides and climate change CO2 Science: Center for the Study of Carbon Dioxide and Global Change