Almost sure convergence: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Jitse Niesen
(move parts to subpages)
mNo edit summary
 
Line 21: Line 21:
</math>.
</math>.


This is an example of the [[strong law of large numbers]].
This is an example of the [[strong law of large numbers]].[[Category:Suggestion Bot Tag]]

Latest revision as of 07:00, 9 July 2024

This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

Almost sure convergence is one of the four main modes of stochastic convergence. It may be viewed as a notion of convergence for random variables that is similar to, but not the same as, the notion of pointwise convergence for real functions.

Definition

In this section, a formal definition of almost sure convergence will be given for complex vector-valued random variables, but it should be noted that a more general definition can also be given for random variables that take on values on more abstract topological spaces. To this end, let be a probability space (in particular, ) is a measurable space). A (-valued) random variable is defined to be any measurable function , where is the sigma algebra of Borel sets of . A formal definition of almost sure convergence can be stated as follows:

A sequence of random variables is said to converge almost surely to a random variable if for all , where is some measurable set satisfying . An equivalent definition is that the sequence converges almost surely to if for all , where is some measurable set with . This convergence is often expressed as:

or

.

Important cases of almost sure convergence

If we flip a coin n times and record the percentage of times it comes up heads, the result will almost surely approach 50% as .

This is an example of the strong law of large numbers.