Riemann-Roch theorem: Difference between revisions
imported>David Lehavi (added examples) |
mNo edit summary |
||
(21 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
In [[algebraic geometry]] the Riemann-Roch theorem states that if <math>C</math> is a smooth [[algebraic curve]], and <math>\mathcal{L}</math> is an [[invertible sheaf]] on <math>C</math> then the the following properties hold: | {{subpages}} | ||
* The [[Euler characteristic]] of <math>\mathcal{L}</math> is given by <math>h^0(\mathcal{L})-h^1(\mathcal{L})=deg(\mathcal{L})-(g-1)</math> | |||
In [[algebraic geometry]] the '''Riemann-Roch theorem''' states that if <math>C</math> is a smooth [[algebraic curve]], and <math>\mathcal{L}</math> is an [[invertible sheaf]] on <math>C</math> then the the following properties hold: | |||
* The [[Euler characteristic]] of <math>\mathcal{L}</math> is given by <math>h^0(\mathcal{L})-h^1(\mathcal{L})=\operatorname{deg}(\mathcal{L})-(g-1)</math> | |||
* There is a [[canonical isomorphism]] <math>H^0(L)(K_C\otimes\mathcal{L}^\vee)\cong H^1(\mathcal{L})</math> | * There is a [[canonical isomorphism]] <math>H^0(L)(K_C\otimes\mathcal{L}^\vee)\cong H^1(\mathcal{L})</math> | ||
== | == Some examples and applications == | ||
The examples we give | The examples we give arise from considering complete [[linear systems]] on curves. | ||
* Any curve <math>C</math> of genus 0 is | * Any curve <math>C</math> of genus 0 is isomorphic to the projective line: Indeed if p is a point on the curve then <math>h^0(p)-0=1-(0-1)=2</math>; hence the map <math>C\to\mathbb{P}H^0(O_C(p))</math> is a degree 1 map, or an isomorphism. | ||
* Any curve of genus 1 is a double cover of a projective line: Indeed if p is a point on the curve then <math>h^0( | * Any curve of genus 1 is a double cover of a projective line: Indeed if p is a point on the curve then <math>h^0(2p)-0=2-(1-1)=2</math>; hence the map <math>C\to\mathbb{P}H^0(O_C(2p))</math> is a degree 2 map. | ||
* Any curve of genus 2 is a double cover of a projective line: Indeed the degree of the [[ | * Any curve of genus 2 is a double cover of a projective line: Indeed the degree of the [[canonical sheaf|canonical class]] <math>K_C</math> is <math>2g-2</math> and therefore <math>h^0(K_C)-h^0(O_C)=2-(2-1)=1</math>; since <math>h^0(O_C)=1</math> the map <math>C\to\mathbb{P}H^0(K_C)</math> is a degree 2 map. | ||
* The [[Riemann-Hurwitz formula]]. | |||
== Geometric Riemann-Roch == | |||
From the | [[Image:linsys_quartic.png|300px|thumb|Some linear systems on a smooth cannonicaly embedded genus-3 curve]]From the statement of the theorem one sees that an [[effective divisor]] <math>D</math> of degree <math>d</math> on a curve <math>C</math> satisfies <math>h^0(D)>d-(g-1)</math> if and only if there is an effective divisor <math>D'</math> such that <math>D+D'\sim K_C</math> in <math>Pic(C)</math>. In this case there is a natural isomorphism | ||
<math>\{[H]\in|K_C|, H\cdot C=D'\}\cong\mathbb{P}H^0(D)</math>, where we identify <math>C</math> with it's image in the dual [[ | <math>\{[H]\in|K_C|, H\cdot C=D'\}\cong\mathbb{P}H^0(D)</math>, where we identify <math>C</math> with it's image in the dual [[canonical system]] <math>|K_C|^*</math>. | ||
As an example we consider effective divisors of degrees <math>2,3</math> on a non hyperelliptic curve <math>C</math> of genus 3. The degree of the | As an example we consider effective divisors of degrees <math>2,3</math> on a non hyperelliptic curve <math>C</math> of genus 3. The degree of the canonical class is <math>2\mbox{genus}(c)-2=4</math>, whereas <math>h^0(K_C)=2\mbox{genus}(C)-2-(\mbox{genus}(C)-1)+h^0(0)=g</math>. Hence the canonical image of <math>C</math> is a smooth plane quartic. We now idenitfy <math>C</math> with it's image in the dual canonical system. Let <math>p,q</math> be two points on <math>C</math> then there are exactly two points | ||
<math>r,s</math> such that <math>C\cap\overline{pq}=\{p,q,r,s\}</math>, where we intersect with multiplicities, and if <math>p=q</math> we consider the tangent line <math>T_p C</math> instead of <math>\overline{pq}</math>. Hence there is a natural | <math>r,s</math> such that <math>C\cap\overline{pq}=\{p,q,r,s\}</math>, where we intersect with multiplicities, and if <math>p=q</math> we consider the tangent line <math>T_p C</math> instead of the line <math>\overline{pq}</math>. Hence there is a natural isomorphism between <math>\mathbb{P}h^0(O_C(p+q))</math> and the unique point in <math>|K_C|</math> representing the line <math>\overline{pq}</math>. There is also a natural ismorphism between <math>\mathbb{P}(O_C(p+q+r))</math> and the points in <math>|K_C|</math> representing lines through the points <math>s</math>. | ||
== History and proofs == | |||
In 1857 Riemann proved the inequality <math>h^0(O_C(D))\leq \operatorname{deg}(D)-(g-1)</math>; the proof used function theoretic methods on a gluing diagram of a 4g-gon. In 1865 Riemann's student Roch identified the difference in the inequality as the dimension of the cohomology group of differentials with prescribed zeros given by <math>H^0(O_C(K-D))</math>. In the second half of the 19th century, and in the beginning of the 20th century, a huge effort went into making the proof more geometric, and later more algebraic. (i.e. to get a proof over function fields which is independent of the geometric model). The problem in "geometrizing" the theorem is that in the 19th century, curves would always arise as embedded curves in some ambient projective space, and one had to find birationaly invariant definitions for the cohomology groups involved in the theorem. The problem in "algebraizing" the theorem is that one has to define differentials over function fields. In subsequent years the analytic, geometric and algebraic proofs have all been considerably simplified - we list references below. The current "standard" proof is the sheaf theoretic one: using modern tools, the theorem is an immediate consequence of [[Serre's duality]], and the fact that if <math>D,D'</math> are divisors on <math>C</math> then <math>\chi(O_C(D+D'))=\chi(O_C(D))+\chi(O_C(D'))</math>. | |||
== Generalizations == | == Generalizations == | ||
The generalizations of the Riemann-Roch theorem come in two flavors: | |||
One direction views the Riemann-Roch theorem as a tool to study any linear system on a any curve. [[Clifford's theorem]] gives a better bound on the dimension of special linear systems on curve. If the assumption on the curve is relaxed to be a generic curve, then the [[Brill-Noether Theorem]] and the [[Petri Theorem]] give | |||
good descriptions of the geometry of the linear system. | |||
Another direction of generalization, with more far-reaching consequences, is to view Riemann-Roch as a tool to compute the Euler characteristic of a vector bundle on a Variety. The first generalizations in this direction go back to the beginning of the 20th century with [[Riemann-Roch for surfaces]] and [[Noether's formula]] on surfaces. The next step, taken during the 1960s, is the [[Hirzebruch-Riemann-Roch theorem]], which analyze the Euler characteristic of the canonical bundle of an arbitrary. The final step in the algebro-geometric setting is the [[Grothendieck-Riemann-Roch theorem]], which analyzes the behaviour of the Euler characteristic of vector bundles under pullbacks; e.g. the Riemann-Roch theorem can be deduced from the Grothendieck-Riemann Roch theorem by projecting a curve to a point. | |||
In the analytic setting Grothendieck Riemann Roch had one more generalization: the [[Atiyah-Singer index theorem]]. | |||
[ | == References == | ||
[[Category: | * J. Gray The ''Riemann-Roch theorem and Geometry'' Documenta Mathematica Extra Vo. ICM 1998 III 811-822, available online at [http://www.emis.de/journals/DMJDMV/xvol-icm/19/Gray.MAN.ps.gz] (history) | ||
* E. Arabarello M. Cornalba P. Griffiths and J. Harris ''Geometry of Algebraic Curves'': Volume 1 ISBN 0387909974 (classical geometric proof, many applications and examples) | |||
* P. Grifiths and J. Harris ''Principles of Algebraic geometry'' ISBN 0-471-05059-8 Chapter 2.3 (analytic approach and sheaf theoretic approach, many applications and examples) | |||
* M. Rosen ''Number theory in Function Fields'' ISBN 0-387-95335-3 Chapter 6 (algebraic approach) | |||
* W. Fulton ''Intersection Theory'' ISBN 0387985492 Chapters 15 and 18 (sheaf theoretic approach and generalizations)[[Category:Suggestion Bot Tag]] |
Latest revision as of 11:00, 12 October 2024
In algebraic geometry the Riemann-Roch theorem states that if is a smooth algebraic curve, and is an invertible sheaf on then the the following properties hold:
- The Euler characteristic of is given by
- There is a canonical isomorphism
Some examples and applications
The examples we give arise from considering complete linear systems on curves.
- Any curve of genus 0 is isomorphic to the projective line: Indeed if p is a point on the curve then ; hence the map is a degree 1 map, or an isomorphism.
- Any curve of genus 1 is a double cover of a projective line: Indeed if p is a point on the curve then ; hence the map is a degree 2 map.
- Any curve of genus 2 is a double cover of a projective line: Indeed the degree of the canonical class is and therefore ; since the map is a degree 2 map.
- The Riemann-Hurwitz formula.
Geometric Riemann-Roch
From the statement of the theorem one sees that an effective divisor of degree on a curve satisfies if and only if there is an effective divisor such that in . In this case there is a natural isomorphism
, where we identify with it's image in the dual canonical system .
As an example we consider effective divisors of degrees on a non hyperelliptic curve of genus 3. The degree of the canonical class is , whereas . Hence the canonical image of is a smooth plane quartic. We now idenitfy with it's image in the dual canonical system. Let be two points on then there are exactly two points such that , where we intersect with multiplicities, and if we consider the tangent line instead of the line . Hence there is a natural isomorphism between and the unique point in representing the line . There is also a natural ismorphism between and the points in representing lines through the points .
History and proofs
In 1857 Riemann proved the inequality ; the proof used function theoretic methods on a gluing diagram of a 4g-gon. In 1865 Riemann's student Roch identified the difference in the inequality as the dimension of the cohomology group of differentials with prescribed zeros given by . In the second half of the 19th century, and in the beginning of the 20th century, a huge effort went into making the proof more geometric, and later more algebraic. (i.e. to get a proof over function fields which is independent of the geometric model). The problem in "geometrizing" the theorem is that in the 19th century, curves would always arise as embedded curves in some ambient projective space, and one had to find birationaly invariant definitions for the cohomology groups involved in the theorem. The problem in "algebraizing" the theorem is that one has to define differentials over function fields. In subsequent years the analytic, geometric and algebraic proofs have all been considerably simplified - we list references below. The current "standard" proof is the sheaf theoretic one: using modern tools, the theorem is an immediate consequence of Serre's duality, and the fact that if are divisors on then .
Generalizations
The generalizations of the Riemann-Roch theorem come in two flavors: One direction views the Riemann-Roch theorem as a tool to study any linear system on a any curve. Clifford's theorem gives a better bound on the dimension of special linear systems on curve. If the assumption on the curve is relaxed to be a generic curve, then the Brill-Noether Theorem and the Petri Theorem give good descriptions of the geometry of the linear system.
Another direction of generalization, with more far-reaching consequences, is to view Riemann-Roch as a tool to compute the Euler characteristic of a vector bundle on a Variety. The first generalizations in this direction go back to the beginning of the 20th century with Riemann-Roch for surfaces and Noether's formula on surfaces. The next step, taken during the 1960s, is the Hirzebruch-Riemann-Roch theorem, which analyze the Euler characteristic of the canonical bundle of an arbitrary. The final step in the algebro-geometric setting is the Grothendieck-Riemann-Roch theorem, which analyzes the behaviour of the Euler characteristic of vector bundles under pullbacks; e.g. the Riemann-Roch theorem can be deduced from the Grothendieck-Riemann Roch theorem by projecting a curve to a point. In the analytic setting Grothendieck Riemann Roch had one more generalization: the Atiyah-Singer index theorem.
References
- J. Gray The Riemann-Roch theorem and Geometry Documenta Mathematica Extra Vo. ICM 1998 III 811-822, available online at [1] (history)
- E. Arabarello M. Cornalba P. Griffiths and J. Harris Geometry of Algebraic Curves: Volume 1 ISBN 0387909974 (classical geometric proof, many applications and examples)
- P. Grifiths and J. Harris Principles of Algebraic geometry ISBN 0-471-05059-8 Chapter 2.3 (analytic approach and sheaf theoretic approach, many applications and examples)
- M. Rosen Number theory in Function Fields ISBN 0-387-95335-3 Chapter 6 (algebraic approach)
- W. Fulton Intersection Theory ISBN 0387985492 Chapters 15 and 18 (sheaf theoretic approach and generalizations)