Small angle approximation: Difference between revisions
Jump to navigation
Jump to search
imported>Boris Tsirelson (link) |
imported>Johan Förberg (indent formula) |
||
Line 2: | Line 2: | ||
The '''Small angle approximation''' is a rule that says that for small angles, the [[trigonometric function]]s sine and tangent are approximately equal to the angle. This approximation is relevant only when angles are measured in [[radian]]s. Of course, the equality is not exact; only when the angle is zero are the three truly equal. In symbolic terms: | The '''Small angle approximation''' is a rule that says that for small angles, the [[trigonometric function]]s sine and tangent are approximately equal to the angle. This approximation is relevant only when angles are measured in [[radian]]s. Of course, the equality is not exact; only when the angle is zero are the three truly equal. In symbolic terms: | ||
<math> \theta \approx \sin \theta \approx \tan \theta </math> | :<math> \theta \approx \sin \theta \approx \tan \theta </math> |
Revision as of 12:02, 21 February 2011
The Small angle approximation is a rule that says that for small angles, the trigonometric functions sine and tangent are approximately equal to the angle. This approximation is relevant only when angles are measured in radians. Of course, the equality is not exact; only when the angle is zero are the three truly equal. In symbolic terms: