Laplacian: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Gemma E. Mason
m (turned "spherical coordinates" and "cylindrical coordinates" into links)
imported>Gemma E. Mason
m (turned "spherical coordinates" and "cylindrical coordinates" into links)
Line 6: Line 6:
<math>\frac{1}{\rho}\frac{\partial}{\partial \rho}\bigl(\rho\frac{\partial}{\partial\rho}\bigr)+\frac{1}{\rho^{2}}\frac{\partial^{2}}{\partial\phi^{2}}+\frac{\partial^{2}}{\partial z^{2}}</math><br />
<math>\frac{1}{\rho}\frac{\partial}{\partial \rho}\bigl(\rho\frac{\partial}{\partial\rho}\bigr)+\frac{1}{\rho^{2}}\frac{\partial^{2}}{\partial\phi^{2}}+\frac{\partial^{2}}{\partial z^{2}}</math><br />


In [[spherical co-ordinates]], the Laplacian is<br/>
In [[spherical coordinates]], the Laplacian is<br/>
<math>\frac{1}{\rho^{2}}\frac{\partial}{\partial \rho}\bigl(\rho^{2}\frac{\partial}{\partial\rho}\bigr)+\frac{1}{\rho^{2}\mathrm{sin}\theta}\frac{\partial}{\partial\theta}\bigl(\mathrm{sin}\theta\frac{\partial}{\partial\theta}\bigr)+\frac{1}{\rho^{2}\mathrm{sin}^{2}\theta}\frac{\partial^{2}}{\partial\phi^{2}}</math>
<math>\frac{1}{\rho^{2}}\frac{\partial}{\partial \rho}\bigl(\rho^{2}\frac{\partial}{\partial\rho}\bigr)+\frac{1}{\rho^{2}\mathrm{sin}\theta}\frac{\partial}{\partial\theta}\bigl(\mathrm{sin}\theta\frac{\partial}{\partial\theta}\bigr)+\frac{1}{\rho^{2}\mathrm{sin}^{2}\theta}\frac{\partial^{2}}{\partial\phi^{2}}</math>

Revision as of 00:13, 3 September 2010

The Laplacian is a differential operator of the form

where are Cartesian (that is, rectangular) co-ordinates. The Laplacian is usually denoted by the symbol or written as the gradient squared .

In cylindrical coordinates, the Laplacian takes the form

In spherical coordinates, the Laplacian is