Tin: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Milton Beychok
m (Corrected formatting of references. The first letter in the names of elements are not capitalized in the text unless the element name is the first word in a sentence.)
imported>David Yamakuchi
mNo edit summary
 
(2 intermediate revisions by the same user not shown)
Line 15: Line 15:
}}
}}


'''Tin''' is a [[Chemical elements|chemical element]], having the [[chemical symbol]] Sn. Its [[atomic number]] (the number of [[proton]]s) is 50. It has a [[Atomic mass#Standard atomic weights of the elements|standard atomic weight]] of [[Tin/Atomic mass|{{:Tin/Atomic mass}}]] and is a [[solid]] at [[STP|room temperature]] in its elemental form.
'''Tin''' is a [[Chemical elements|chemical element]], having the [[chemical symbol]] Sn (from the [[Latin]] stannum). Its [[atomic number]] (the number of [[proton]]s) is 50. It has a [[Atomic mass#Standard atomic weights of the elements|standard atomic weight]] of [[Tin/Atomic mass|{{:Tin/Atomic mass}}]] and is a [[solid]] at [[STP|room temperature]] in its elemental form.


Tin is considered to be a member of the "Post-transition metal" class of elements. At a [[pressure]] of 101.325 k[[Pascal (unit)|Pa]], it has a [[boiling point]] of [[Tin/Boiling point|{{:Tin/Boiling point}}]] and a [[melting point]] of [[Tin/Melting point|{{:Tin/Melting point}}]].
Tin is considered to be a member of the "Post-transition metal" class of elements. At a [[pressure]] of 101.325 k[[Pascal (unit)|Pa]], it has a [[boiling point]] of [[Tin/Boiling point|{{:Tin/Boiling point}}]] and a [[melting point]] of [[Tin/Melting point|{{:Tin/Melting point}}]].
Line 21: Line 21:
Tin is used heavily in many industries, providing (among other uses) a plating which is cost effective in preventing [[rust]] formation on [[iron]] and [[steel]], and as a major component in almost all varieties of [[solder]].  It is also used commonly as a [[catalyst]] for [[silicone]] [[mold making]].
Tin is used heavily in many industries, providing (among other uses) a plating which is cost effective in preventing [[rust]] formation on [[iron]] and [[steel]], and as a major component in almost all varieties of [[solder]].  It is also used commonly as a [[catalyst]] for [[silicone]] [[mold making]].


''Pure'' tin however, has been shown<ref>[https://nepp.nasa.gov/whisker/background/ What are Tin Whiskers?] From the website of the National Aeronautics and Space Administration (NASA).</ref> to "grow whiskers" sometimes referred to as "Tin pest" Because of this, pure tin must be used with caution around electronics and electrical circuits, especially in safety related applications.  An alloy of tin and lead<ref>[https://nepp.nasa.gov/whisker/photos/pom/2004april.htm Limitation of Hot Solder Dipping for Mitigation of Tin Whisker Formation] From the NASA website.</ref>, or tin and B\bismuth are sometimes used<ref>[http://www.reliableplating.com/tin.html Tin Plating] From the NASA website</ref> to help prevent whisker growth.
''Pure'' tin however, has been shown<ref>[https://nepp.nasa.gov/whisker/background/ What are Tin Whiskers?] From the website of the National Aeronautics and Space Administration (NASA).</ref> to "grow whiskers" sometimes referred to as "[[Tin pest]]" Because of this, pure tin must be used with caution around electronics and electrical circuits, particularly in high voltage and safety related applications.  An alloy of tin and [[lead]]<ref>[https://nepp.nasa.gov/whisker/photos/pom/2004april.htm Limitation of Hot Solder Dipping for Mitigation of Tin Whisker Formation] From the NASA website.</ref>, or tin and [[bismuth]] are sometimes used<ref>[http://www.reliableplating.com/tin.html Tin Plating] From the NASA website</ref> to help prevent whisker growth.


==References==
==References==
<references/>
<references/>

Latest revision as of 10:12, 10 February 2012

This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
Properties [?]
 
This editable Main Article is under development and subject to a disclaimer.
Tin
118.710(7)g/mol



  Sn
50
1s22s22p63s23p63d104s2 4p64d105s25p2
[ ? ] Post-Transition Metal:
Properties:
Silvery-white, malleable metal. Crystalline structure.


Tin is a chemical element, having the chemical symbol Sn (from the Latin stannum). Its atomic number (the number of protons) is 50. It has a standard atomic weight of 118.710(7)g/mol and is a solid at room temperature in its elemental form.

Tin is considered to be a member of the "Post-transition metal" class of elements. At a pressure of 101.325 kPa, it has a boiling point of 2,602°C and a melting point of 231.93°C.

Tin is used heavily in many industries, providing (among other uses) a plating which is cost effective in preventing rust formation on iron and steel, and as a major component in almost all varieties of solder. It is also used commonly as a catalyst for silicone mold making.

Pure tin however, has been shown[1] to "grow whiskers" sometimes referred to as "Tin pest" Because of this, pure tin must be used with caution around electronics and electrical circuits, particularly in high voltage and safety related applications. An alloy of tin and lead[2], or tin and bismuth are sometimes used[3] to help prevent whisker growth.

References

  1. What are Tin Whiskers? From the website of the National Aeronautics and Space Administration (NASA).
  2. Limitation of Hot Solder Dipping for Mitigation of Tin Whisker Formation From the NASA website.
  3. Tin Plating From the NASA website