Eventology: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Oleg Yu. Vorobyev
imported>Oleg Yu. Vorobyev
(azz2)
Line 1: Line 1:
'''Eventology''' (from {{lang-la|eventum, eventus}} — [[event]], [[outcome]], [[success]], [[destiny]] and + logos) is a scientific theory that studies eventful nature of a [[mind]]{{ref|Schrodinger}} and a [[matter]]{{ref|Schrodinger}}; a huge event variety of [[subject]]s (mind) and [[object]]s (matter); an event structure and event-valued functions; an origin, expansion, and development of sets of events; connections of events with each other; establishes the general and particular laws of eventful existence of a mind and a matter in all event occurrences and event properties.
'''Eventology''' (from lat. eventum, eventus — [[event]], [[outcome]], [[success]], [[destiny]] and + logos) is a scientific theory that studies eventful nature of a [[mind]] and a [[matter]]<ref> Schrödinger Erwin (1959) Mind and Matter. - Cambridge, at the University Press</ref>; a huge event variety of [[subject]]s (mind) and [[object]]s (matter); an event structure and event-valued functions; an origin, expansion, and development of sets of events; connections of events with each other; establishes the general and particular laws of eventful existence of a mind and a matter in all event occurrences and event properties.


<!-- Russian text on Eventology (science)
In a basis of eventology lays remarks, which now seems obvious: «the matter and the mind is simply convenient way of linkage of events together» ([[Russell]]<ref>Russell Bertrand (1945) ''[[History of Western Philosophy (Russell)|A History of Western Philosophy and Its Connection with Political and Social Circumstances from the Earliest Times to the Present Day]]'', New York: Simon and Schuster</ref><ref>Russell Bertrand (1948) ''Human Knowledge: Its Scope and Limits'', London: George Allen & Unwin</ref>, 1946; [http://r-events.narod.ru Vorobyev], [[2001]]) and «the mind appears there and then, where and when there is an ability to make a probabilistic choice» ([[Lefebvre]]<ref> Lefebvre V.A. (2001) Algebra of conscience. - Kluwer Academic Publishers. Dordrecht, Boston, London</ref><ref> Herrnstein R.J. (1961) Relative and Absolute strength of Response as a Function of Frequency of Reinforcement. - Journal of the Experimental Analysis of Behavior, 4, 267-272</ref>, [[2003]]). Using these remarks as initial axioms and also well-developed apparatus of [[Mathematical eventology|'''mathematical eventology''']] ([[Theory of random events (Crisp mathematical eventology)|'''crisp''']] and [[Theory of fuzzy events (Fuzzy mathematical eventology)|'''fuzzy''']]), eventology introduces mind directly as an [[eventological distribution]] of set of events in scientific and mathematical research and understands an eventological movement of events (movement of a matter or a mind) as changing the eventological distributions.
'''Эвентоло́гия''' ''(от лат. ''eventum, eventus'' — событие, исход, удача, судьба и + логия)'' - научная теория о событийном в разуме и материи – об огромном событийном многообразии субъектов (разума) и объектов (материи), их событийном строении и функциях, происхождении, распространении и развитии множеств событий, связях событий друг с другом; устанавливает общие и частные событийные закономерности, присущие существованию разума и материи во всех событийных проявлениях и свойствах.  
-->


In a basis of eventology lays remarks, which now seems obvious: «the matter and the mind is simply convenient way of linkage of events together» ([[Russell]]{{ref|Russell1}} {{ref|Russell2}}, 1946; [http://r-events.narod.ru Vorob’ov], [[2001]]) and «the mind appears there and then, where and when there is an ability to make a probabilistic choice» ([[Lefebvre]]{{ref|Lefebvre}} {{ref|Herrnstein}}, [[2003]]). Using these remarks as initial axioms and also well-developed apparatus of [[User:Helgus/ Mathematical eventology|'''mathematical eventology''']] ([[User:Helgus/ Theory of random events (Crisp mathematical eventology)|'''crisp''']] and [[User:Helgus/ Theory of fuzzy events (Fuzzy mathematical eventology)|'''fuzzy''']]), eventology introduces mind directly as an [[eventological distribution]] of set of events in scientific and mathematical research and understands an eventological movement of events (movement of a matter or a mind) as changing the eventological distributions.
From the point of eventology view, the [[probability]] is a property of an event: an event has a probability the same as the probability has an event; [[subjective probability]]<ref> [http://plato.stanford.edu/archives/sum2003/entries/probability-interpret Hajek, Alan (2003) Interpretations of Probability. - The Stanford Encyclopedia of Philosophy (Summer 2003 Edition), Edward N.Zalta (ed.)]</ref>  property of a [[subjective event]]. Such point of view allows to develop the [[Theory of fuzzy events (Fuzzy mathematical eventology)|eventological theory of fuzzy events]] which exclusively from positions of [[probability theory|Kolmogorov’s axiomatics of probability theory]] offers the strictly proved general approach to the eventological description of various kinds of [[fuzz|fuzziness]] and [[uncertainty]], including those kinds to which [[possibility theory]]<ref> Dubois D., H.Prade (1988) Possibility theory. - New York: Plenum Press</ref>, [[Dempster-Shafer theory| Dempster-Shafer theory of evidence]]<ref>Shafer G. (1976). A Mathematical Theory of Evidence. – Princeton University Press</ref>, [[fuzzy sets]] and [[fuzzy logic| fuzzy logic of Zadeh]]<ref>Zadeh L.A. (1965) Fuzzy Sets. - Information and Control. - Vol.8. - P.338-353</ref><ref>Zadeh L.A. (1968) Probability Measures of Fuzzy Events. - Journal of Mathematical Analysis and Applications. - Vol.10. - P.421-427</ref><ref>Zadeh L.A. (1978). Fuzzy Sets as a Basis for a Theory of Possibility. – Fuzzy Sets and Systems. - Vol.1. - P.3-28</ref><ref>Zadeh L.A. (2005). Toward a Generalized Theory of Uncertainty (GTU) - An Outline. - Information sciences</ref><ref>Zadeh L.A. (2005). Toward a computational theory of precisiation of meaning based on fuzzy logic - the concept of cointensive precisiation. - Proceedings of IFSA-2005 World Congress.} - Beijing: Tsinghua University Press, Springer</ref>, etc. are devoted.<br><br>


<!-- Russian text on Eventology (science)
Alongside with philosophical questions, eventology also mentions [[economic]], [[social]] and other questions in different applied fields of [[natural]] and [[human]] sciences (see [[Eventology and its applications|«Eventology and its applications»]]).
В основе эвентологии лежит кажущиеся теперь очевидными наблюдения: ''«[[материя]] и [[разум]] — это просто удобный способ связывания событий воедино»'' (Рассел, 1946; Воробьев, 2001) и ''«разум появляется там и тогда, где и когда появляется способность делать вероятностный выбор»'' (Лефевр, 2003). Опираясь на эти наблюдения и математический аппарат '''[[теория случайных событий|теории случайных событий]]''', эвентология непосредстенно вводит разум как эвентологическое распределение множества событий в научное и математическое исследование, а эвентологическое движение событий — движение материи или разума — понимает как изменение [[эвентологическое распределение|эвентологических распределений]].
-->
 
From the point of eventology view, the [[probability]] is a property of an event: an event has a probability the same as the probability has an event; [[subjective probability]]{{ref|Hajek}} is a property of a [[subjective event]]. Such point of view allows to develop the [[User:Helgus/ Theory of fuzzy events (Fuzzy mathematical eventology)|eventological theory of fuzzy events]] which exclusively from positions of [[probability theory|Kolmogorov’s axiomatics of probability theory]] offers the strictly proved general approach to the eventological description of various kinds of [[fuzz|fuzziness]] and [[uncertainty]], including those kinds to which [[possibility theory]] {{ref|DuboisPrade}}, [[Dempster-Shafer theory| Dempster-Shafer theory of evidence]]{{ref|Shafer}}, [[fuzzy sets]] and [[fuzzy logic| fuzzy logic of Zadeh]]{{ref|Zadeh1}} {{ref|Zadeh2}} {{ref|Zadeh3}} {{ref|Zadeh4}} {{ref|Zadeh5}}, etc. are devoted.<br><br>
 
Alongside with philosophical questions, eventology also mentions [[economic]], [[social]] and other questions in different applied fields of [[natural]] and [[human]] sciences (see [[User:Helgus/ Eventology and its applications|«Eventology and its applications»]]).
 
<!-- Russian text on Eventology (science)
Наряду с философскими вопросами, эвентология также затрагивает экономические, социальные и общечеловеческие вопросы. С точки зрения эвентологии, вероятность — это свойство события: у события есть вероятность так же, как у вероятности есть событие; субъективная вероятность — свойство субъективного события. Такая точка зрения позволяет развить  эвентологическую теорию нечетких событий, которая исключительно с позиций [[теория вероятностей|колмогоровской аксиоматики теории вероятностей]] предлагает общий строго обоснованный подход к эвентологическому описанию самых различных видов нечеткости и неопределенности, в том числе таких, которым посвящены [[теория возможностей]], [[теория очевидностей Демпстера-Шафера]], [[Теория нечётких множеств (Заде)|нечёткие множества]] и [[нечёткая логика]] [[Лотфи Аскер Заде|Заде]] и др.-->


==Historical survey==
==Historical survey==
The first isolated attempts to cognize a mind and a matter from the point of view of an event, have been made during antique times ([[Aristotle]], [[Plato]], [[Sokrat]]). Elaborated through Renaissance antique ideas initiated modern scientific knowledge. Rapt observations upon event occurrence laid the foundation of probability theory in the 16th century ([[Blaise Pascal|Pascal]], [[Ferma]]). In the beginning of the 20th century it has turned into the scientific discipline, which leaned over mathematical definition of event as a subset of space of elementary events ([[Kolmogorov]], 1933); basically it was intended for  ''«calculating probabilities of events from probabilities of other events»'' («Mathematical encyclopedic dictionary» (ed. Yu.V.Prokhorov), [[MED]], 1988; Encyclopedia «Probability and Mathematical Statistics» (ed. Yu.V.Prokhorov), [[PMS]], 1995). During the 19-20 c. experimental methods of observing upon events was thriving, as the result [[mathematical statistics]] arose – the scientific discipline focused on the solving problems, which are in the certain sense inverse to problems of probability theory, – estimation of [[probability distribution]]s by results of observations upon events.
The first isolated attempts to cognize a mind and a matter from the point of view of an event, have been made during antique times ([[Aristotle]], [[Plato]], [[Sokrat]]). Elaborated through Renaissance antique ideas initiated modern scientific knowledge. Rapt observations upon event occurrence laid the foundation of probability theory in the 16th century ([[Blaise Pascal|Pascal]], [[Ferma]]). In the beginning of the 20th century it has turned into the scientific discipline, which leaned over mathematical definition of event as a subset of space of elementary events ([[Kolmogorov]], 1933); basically it was intended for  ''«calculating probabilities of events from probabilities of other events»'' («Mathematical encyclopedic dictionary» (ed. Yu.V.Prokhorov), [[MED]], 1988; Encyclopedia «Probability and Mathematical Statistics» (ed. Yu.V.Prokhorov), [[PMS]], 1995). During the 19-20 c. experimental methods of observing upon events was thriving, as the result [[mathematical statistics]] arose – the scientific discipline focused on the solving problems, which are in the certain sense inverse to problems of probability theory, – estimation of [[probability distribution]]s by results of observations upon events.
<!-- Russian text on Eventology (science)
== Исторический обзор ==
Первые разрозненные попытки событийного познания разума и материи были сделаны в античные времена ([[Аристотель]], [[Платон]], [[Сократ]]). Их труды, продолженные в эпоху возрождения, заложили начало современного научного знания. Пристальные наблюдения за наступлением событий положили в 16 в. начало [[теория вероятностей|теории вероятностей]] ([[Паскаль]], [[Ферма]]), которая в начале 20 в. превратилась в научную дисциплину, опирающуюся на математическое определение события, как подмножества пространства элементарных событий  ([[Колмогоров, Андрей Николаевич|Колмогоров]], 1933), с основным предназначением «вычислять вероятности одних событий по вероятностям других событий» (энциклопедический МС, 1988; энциклопедия ВиМС, 1999). В 19-20 в.в. начинают бурно развиваться экспериментальные методы наблюдения за событиями, и как результат, возникает [[математическая статистика]] – научная дисциплина, ориентированная на решение задач, в определенном смысле обратных задачам теории вероятностей, – оценка вероятностных распределений по результатам наблюдений за событиями.
-->


The further development of [[probability theory]] has expanded the known eventful world of subjects and objects; has deepened the conception of it's eventful structure. At the same time speculative theories of eventful development and properties of a mind and a matter still prevailed. Sharply increased number of studied eventful objects (new eventful methods, penetration eventful techniques in various areas of knowledge), accumulation and differentiation of eventful knowledge formed a variety of application fields for eventful methodology.
The further development of [[probability theory]] has expanded the known eventful world of subjects and objects; has deepened the conception of it's eventful structure. At the same time speculative theories of eventful development and properties of a mind and a matter still prevailed. Sharply increased number of studied eventful objects (new eventful methods, penetration eventful techniques in various areas of knowledge), accumulation and differentiation of eventful knowledge formed a variety of application fields for eventful methodology.


<!-- Russian text on Eventology (science)
One of the main achievements on a boundary of millenia is an association of separated eventful approaches and methods by the general name – '''«eventology»''' (the scientific theory directed on studying sets of events), and also creation of [[Mathematical eventology|'''mathematical eventology (crisp and fuzzy)''']] – the new branch, which has arisen within the probability theory. It studies [[eventological distribution]]s of sets of events, structures of its dependences and leans over the new [[principle of eventological duality]] of notion «a set of random events» and «a random set of events»
Дальнейшее развитие теории вероятностей раздвинуло границы известного событийного мира субъектов и объектов, углубило представление об их событийном строении. Вместе с тем все еще преобладали умозрительные теории о событийном развитии и свойствах разума и материи. В результате резко возросшего числа изучаемых событийных объектов (новые событийные методы, проникновение событийной методики в различные области знания), накоплении и дифференциации событийных знаний сформировалось много областей применения событийной методологии.
-->


One of the main achievements on a boundary of millenia is an association of separated eventful approaches and methods by the general name – '''«eventology»''' (the scientific theory directed on studying sets of events), and also creation of [[User:Helgus/ Mathematical eventology|'''mathematical eventology (crisp and fuzzy)''']] the new branch, which has arisen within the probability theory. It studies [[eventological distribution]]s of sets of events, structures of its dependences and leans over the new [[principle of eventological duality]] of notion «a set of random events» and «a random set of events»
The development of eventology in 21 century has two characteristic and interconnected tendencies. On the one hand, [[Mathematical eventology |mathematical eventology]] develops; it has reached amazing successes, since 90th years of the last century has opened and isolated mathematical bases of the theory of dependences of sets of events. On the other hand, the aspiration to complete synthetic eventful knowledge of a mind and a matter has incited the eventological branches studying eventful properties of a mind and a matter at all structural levels of it's organization.


<!-- Russian text on Eventology (science)
Among the last achievements of eventology are: – the eventological portfolio analysis, which allowed to put and solve so-called inverse eventological Markowitz’s problem ([[Harry Markowitz]]<ref>[http://r-events.narod.ru/0-papers/Markowitz1952-p0060.pdf Markowitz Harry (1952) Portfolio Selection. - The Journal of Finance. Vol. VII, No. 1, March, 77-91.]</ref>, the Nobel Prize, 1990) - unknown before. Discovering eventological basis of market «[[Alfred Marshall|Marshall]]’s cross»<ref>[http://socserv2.socsci.mcmaster.ca/~econ/ugcm/3ll3/marshall/ Marshall Alfred: A collection of Marshall's published works]</ref> («[[supply and demand]] cross») in [[economics]]; theory «William [[Vickrey auction]]s» ([[William Vickrey]]<ref> [http://www.u.arizona.edu/~dreiley/papers/VickreyHistory.pdf Vickrey William: Paper on the history of Vickrey auctions in stamp collecting]</ref>, the Nobel Prize, 1994); the modern [[prospect theory]] ([[Daniel Kahneman]]<ref>Kahneman D., Tversky A. (1979) Prospect theory: An analysis of decisios under risk. - Econometrica, 47, 313-327</ref><ref>Tversky A., Kahneman D. (1992) Advances in prospect theory: cumulative representation of uncertainty. - Journal of Risk and Uncertainty, 5, 297-323</ref>, the Nobel Prize, 2002), and, at last, the eventological system analysis with an object of research - sets of events – theoretical models of complex systems of events, which describes structures of system connections of any complexity with exhaustive completeness, resulted into fundamental eventological changes.
Одно из главных достижений на рубеже тысячелетий – объединение разрозненных событийных подходов и методов общим названием – '''эвентология''' (научная теория, направленная на изучение множеств событий), а также создание теории случайных событий – '''[[теория случайных событий|математической эвентологии]]''' – нового направления, возникшего в рамках теории вероятностей, изучающего эвентологические распределения множеств событий, структуры зависимостей множеств событий и опирающегося на [[эвентологическая дуальность|дуальность]] понятий [[множество случайных событий|множества случайных событий]] и [[случайное множество событий|случайного множества событий]].
-->
 
The development of eventology in 21 century has two characteristic and interconnected tendencies. On the one hand, [[User:Helgus/ Mathematical eventology |mathematical eventology]] develops; it has reached amazing successes, since 90th years of the last century has opened and isolated mathematical bases of the theory of dependences of sets of events. On the other hand, the aspiration to complete synthetic eventful knowledge of a mind and a matter has incited the eventological branches studying eventful properties of a mind and a matter at all structural levels of it's organization.
 
<!-- Russian text on Eventology (science)
Для развития эвентологии 21 века характерны две взаимосвязанные тенденции. С одной стороны, развивается эвентологическая теория (теория случайных событий), которая достигла поразительных успехов, начиная с 90-х годов прошлого века, вскрыла и обособила математические основы теории зависимостей множеств событий. С другой стороны, стремление к целостному синтетическому событийному познанию разума и материи привело к прогрессу эвентологических направлений, изучающих событийные свойства разума и материи на всех структурных уровнях их организации.
-->
 
Among the last achievements of eventology are: – the eventological portfolio analysis, which allowed to put and solve so-called inverse eventological Markowitz’s problem ([[Harry Markowitz]]{{ref|Markowitz}}, the Nobel Prize, 1990) - unknown before. Discovering eventological basis of market «[[Alfred Marshall|Marshall]]’s cross»{{ref|Marshall}} («[[supply and demand]] cross») in [[economics]]; theory «William [[Vickrey auction]]s» ([[William Vickrey]]{{ref|Vickrey}}, the Nobel Prize, 1994); the modern [[prospect theory]] ([[Daniel Kahneman]]{{ref|Kahneman}}{{ref|Tversky}}, the Nobel Prize, 2002), and, at last, the eventological system analysis with an object of research - sets of events – theoretical models of complex systems of events, which describes structures of system connections of any complexity with exhaustive completeness, resulted into fundamental eventological changes.
 
<!-- Russian text on Eventology (science)
Среди последних достижений эвентологии – эвентологический портфельный анализ, позволивший поставить и решить ранее неизвестную так называемую обратную эвентологическую  задачу Марковица (Марковиц, нобелевская премия, 1990).  К фундаментальным изменениям в эвентологических методах привело открытие эвентологических обоснований рыночного «креста Маршалла» в экономикс, теории «аукционов Уильяма Викри» (Викри, нобелевская премия, 1994) и современной теории перспектив Канемана и Тверского (Канеман, нобелевская премия, 2002).
-->


In each of the areas named above these eventological discoveries have allowed to look at problems with new eventful points of view. This has immediately led to new unexpected statements of problems, which became solvable with eventological methods,  adding and improving each of the theories.
In each of the areas named above these eventological discoveries have allowed to look at problems with new eventful points of view. This has immediately led to new unexpected statements of problems, which became solvable with eventological methods,  adding and improving each of the theories.
   
   
Practical significance of eventological researches and methods for a number of the most urgent applied areas, and also penetration into these researches of mathematical ideas and methods of the theory of random events have advanced eventology and the mathematical eventology from the beginning 21 century to the foremost boundaries of natural sciences and human sciences.
Practical significance of eventological researches and methods for a number of the most urgent applied areas, and also penetration into these researches of mathematical ideas and methods of the theory of random events have advanced eventology and the mathematical eventology from the beginning 21 century to the foremost boundaries of natural sciences and human sciences.
<!-- Russian text on Eventology (science)
Эти эвентологические открытия позволили в каждой из перечисленных областей взглянуть на проблемы с новой событийной точки зрения, что немедленно привело к новым неожиданным постановкам задач, которые оказалось возможным решить эвентологическими методами и тем самым дополнить и усовершенствовать каждую из теорий.
Практическое значение эвентологических исследований и методов в ряде актуальнейших прикладных областей, а также проникновение в эти исследования математических идей и методов теории случайных событий выдвинули эвентологию и математическую эвентологию с начала 21 в. на передовые рубежи естествознания и наук о человеке.
-->


== Eventological sections on International conferences ==
== Eventological sections on International conferences ==
* [http://kolmogorov-100.mi.ras.ru <b>(2003, Moscow University, Moscow, chairman. prof. A.N.Shiryaev)</b> International Conference "Kolmogorov and contemporary mathematics"] [http://kolmogorov-100.mi.ras.ru/schedule.pdf [1]][http://urss.ru/cgi-bin/db.pl?lang=ru&blang=en&page=Book&list=69&id=24900 [2]]
* [http://kolmogorov-100.mi.ras.ru <b>(2003, Moscow University, Moscow, chairman. prof. A.N.Shiryaev)</b> International Conference "Kolmogorov and contemporary mathematics"] [http://kolmogorov-100.mi.ras.ru/schedule.pdf [1]][http://urss.ru/cgi-bin/db.pl?lang=ru&blang=en&page=Book&list=69&id=24900 [2]]
* [http://www.iasted.org/conferences/2005/russia/acit-specialsession.htm <b>(2005, IASTED'2005, Novosibirsk)</b> II International Conference "Automation, Control and Information Technology"<br> (session “Eventology of random-fuzzy events”, chairman prof. O.Yu.Vorob’ov)]
* [http://www.iasted.org/conferences/2005/russia/acit-specialsession.htm <b>(2005, IASTED'2005, Novosibirsk)</b> II International Conference "Automation, Control and Information Technology"<br> (session “Eventology of random-fuzzy events”, chairman prof. O.Yu.Vorobyev)]
* [http://ifsa2005.em.tsinghua.edu.cn <b>(2005, IFSA'2005, Beijing, chairman prof. L.A.Zadeh)</b> XI International Fuzzy Systems Association World Congress<br> (session “Eventology of fuzzy events”, chairman prof. O.Yu.Vorob’ov)]
* [http://ifsa2005.em.tsinghua.edu.cn <b>(2005, IFSA'2005, Beijing, chairman prof. L.A.Zadeh)</b> XI International Fuzzy Systems Association World Congress<br> (session “Eventology of fuzzy events”, chairman prof. O.Yu.Vorobyev)]
* [http://cubisme.upc.es/eusflat05/index.php?id=invited <b>(2005, EUSFLAT'2005, Barselona, chairman prof. L.A.Zadeh)</b> IV International Conference of European Society for Fuzzy Logic and Technology<br> (session “Eventological theory of fuzzy events”, chairman prof. O.Yu.Vorob’ov)]
* [http://cubisme.upc.es/eusflat05/index.php?id=invited <b>(2005, EUSFLAT'2005, Barselona, chairman prof. L.A.Zadeh)</b> IV International Conference of European Society for Fuzzy Logic and Technology<br> (session “Eventological theory of fuzzy events”, chairman prof. O.Yu.Vorobyev)]
* [http://ipmu2006.lip6.fr/program.php <b>(2006, IPMU'2006, Paris, chairman prof. L.A.Zadeh, keynote speaker D.Kahneman)</b> XI International Conference “Information Processing and Management of Uncertainty”<br> (session E22 “Eventology and Unceratainty”, chairman prof. O.Yu.Vorob’ov)]
* [http://ipmu2006.lip6.fr/program.php <b>(2006, IPMU'2006, Paris, chairman prof. L.A.Zadeh, keynote speaker D.Kahneman)</b> XI International Conference “Information Processing and Management of Uncertainty”<br> (session E22 “Eventology and Unceratainty”, chairman prof. O.Yu.Vorobyev)]


== [http://r-events.narod.ru/6e.htm PhD theses on eventology (phys.-math. sciences, in Russian)] ==
== [http://r-events.narod.ru/6e.htm PhD theses on eventology (phys.-math. sciences, in Russian)] ==
* Vorob'ov Alexei <b>(1998)</b> Direct and inverse problems for models of spreading space risks. Krasnoyarsk: ICM of RAS  
* Vorobyev Alexei <b>(1998)</b> Direct and inverse problems for models of spreading space risks. Krasnoyarsk: ICM of RAS  
* Goldenok Ellen <b>(2002)</b> Modeling dependence and interaction structures of random events in statistical systems. Krasnoyarsk: KGTEI  
* Goldenok Ellen <b>(2002)</b> Modeling dependence and interaction structures of random events in statistical systems. Krasnoyarsk: KGTEI  
* Kupriyanova Tatyana <b>(2002)</b> A problem of classification of subsets of random set and its application. Krasnoyarsk: Krasnoyarsk University  
* Kupriyanova Tatyana <b>(2002)</b> A problem of classification of subsets of random set and its application. Krasnoyarsk: Krasnoyarsk University  
Line 79: Line 39:
* Tyaglova Hellena <b>(2006)</b> Game theory methods of analysis of random sets of events. Krasnoyarsk: ICM of RAS  
* Tyaglova Hellena <b>(2006)</b> Game theory methods of analysis of random sets of events. Krasnoyarsk: ICM of RAS  
* Tarasova Olga <b>(2007)</b> Grid and Regression Algorithms of Approximation of Complicated Systems of Events. Krasnoyarsk: ICM of RAS  
* Tarasova Olga <b>(2007)</b> Grid and Regression Algorithms of Approximation of Complicated Systems of Events. Krasnoyarsk: ICM of RAS  
<!--
== Литература ==
Центральная печать:
* Воробьев О.Ю., Голденок Е.Е., Клочков С.В. Эвентологический «зонтик» Марковица и «зонтичная» визуализация эвентологического симплекса // Вестник КрасГУ. «Физико-математические науки». — 2005. — № 2. — С. 175–184.
* Воробьев О.Ю., Дедова А.В., Клочков С.В., Тарасова О.Ю. Эвентология вербальных ассоциаций // Вестник КрасГУ. «Физико-математические науки». — 2005. — № 1. — С. 183–194.
* Воробьев О.Ю., Голденок Е.Е. Метрические эвентологические распределения // Вестник КрасГУ. «Физико-математические науки». — 2004. — № 1. — С. 174–181.
* Воробьев О.Ю. Случайные cобытия: неравенства Фреше и корреляции Фреше // Вестник КрасГУ. «Физико-математические науки». — 2003. — Вып. 1. — С. 80–87.
* Воробьев О.Ю., Голденок Е.Е., Семенова Д.В. Случайно-множественные разложения двудольных случайных векторов // Вестник КрасГУ. «Физико-математические науки». — 2003. — Вып. 1. — С. 88–96.
Учебно-методические издания:
* Воробьев О.Ю., Голденок Е.Е. Структурный сет-анализ зависимостей случайных событий // Учебное пособие с грифом УМО университетов РФ. — Красноярск: ИВМ СО РАН, КрасГУ, 2004. — 106 с.
* Воробьев О.Ю., Фомин А.Ю. Регрессионный сет-анализ случайных событий // Учебное пособие с грифом УМО университетов РФ. — Красноярск: ИВМ СО РАН, КрасГУ, 2004. — 116 с.
* Воробьев О.Ю., Семенова Д.В. Портфельный сет-анализ случайных событий // Учебное пособие с грифом УМО университетов РФ. — Красноярск: ИВМ СО РАН, КрасГУ, 2005. — 109 с.
-->


== Bibliography (in English) ==
== Bibliography (in English) ==
* Vorob'ov O.Yu. <b>(1991)</b> Set-summation. Soviet Math. Dokl. 1991, Vol.43,p.747-752  
* Vorobyev O.Yu. <b>(1991)</b> Set-summation. Soviet Math. Dokl. 1991, Vol.43,p.747-752  
* Vorob'ov O.Yu. <b>(1993)</b> The calculus of set-distribution. Rissian Acad. Sci., Dokl. Math., 1993, Vol.46, 301-306.  
* Vorobyev O.Yu. <b>(1993)</b> The calculus of set-distribution. Rissian Acad. Sci., Dokl. Math., 1993, Vol.46, 301-306.  
* Vorob'ov O.Yu., A.O.Vorob'ov <b>(1994)</b> Summation of set-additive functions anf the Mobius inversion formula. Russian Acad. Sci. Dokl. Math., vol. 49, No. 2, 340-344.
* Vorobyev O.Yu., A.O.Vorobyev <b>(1994)</b> Summation of set-additive functions anf the Mobius inversion formula. Russian Acad. Sci. Dokl. Math., vol. 49, No. 2, 340-344.
* [http://www.amazon.com/gp/sitbv3/reader/ref=sib_dp_pt/103-2974729-5527057?%5Fencoding=UTF8&asin=0471937576 Stoyan Dietrich, and Helga Stoyan <b>(1994)</b> Fractals, Random Shapes and Point Fields. Methods of Geometrical Statistics. John Wiley and Sons. Chichester, New York<br> (pp.107-116: ''Vorob'ov's means'' of a random set)]
* [http://www.amazon.com/gp/sitbv3/reader/ref=sib_dp_pt/103-2974729-5527057?%5Fencoding=UTF8&asin=0471937576 Stoyan Dietrich, and Helga Stoyan <b>(1994)</b> Fractals, Random Shapes and Point Fields. Methods of Geometrical Statistics. John Wiley and Sons. Chichester, New York<br> (pp.107-116: ''Vorobyev's means'' of a random set)]
* Vorob'ov O.Yu., A.O.Vorob'ov <b>(1996)</b> Inverse problems for generalized Richardson's model of spread. Computational Fluid Dynamics'96, John Wiley & Sons, 104-110.
* Vorobyev O.Yu., A.O.Vorobyev <b>(1996)</b> Inverse problems for generalized Richardson's model of spread. Computational Fluid Dynamics'96, John Wiley & Sons, 104-110.
* Vorob'ov O.Yu. <b>(1996)</b> A random set analysis of fire spread. Fire Technology, NFPA (USA), v.32, N 2, 137--173.
* Vorobyev O.Yu. <b>(1996)</b> A random set analysis of fire spread. Fire Technology, NFPA (USA), v.32, N 2, 137--173.
* Vorob'ov Oleg Yu., Arcady A. Novosyolov, Konstantin V. Simonov, and Andrew Yu. Fomin <b>(2001)</b> Portfolio Analysis of Financial Market Risks by Random Set Tools. Risks in Investment Accumulation Products of Financial Institutions. Simposium Proceedings held in January 1999, New York. Schaumburg, USA: The Society of Actuaries, 43--66.
* Vorobyev Oleg Yu., Arcady A. Novosyolov, Konstantin V. Simonov, and Andrew Yu. Fomin <b>(2001)</b> Portfolio Analysis of Financial Market Risks by Random Set Tools. Risks in Investment Accumulation Products of Financial Institutions. Simposium Proceedings held in January 1999, New York. Schaumburg, USA: The Society of Actuaries, 43--66.


== Bibliography (in Russian) ==
== Bibliography (in Russian) ==
* Vorob'ov Oleg <b>(1978)</b> Probabilistic set modeling. — Novosibirsk: Nauka. — 131 p.  
* Vorobyev Oleg <b>(1978)</b> Probabilistic set modeling. — Novosibirsk: Nauka. — 131 p.  
* Vorob'ov Oleg <b>(1984)</b> Mean measure modeling. — Moscow: Nauka. — 133 p.  
* Vorobyev Oleg <b>(1984)</b> Mean measure modeling. — Moscow: Nauka. — 133 p.  
* Vorob'ov Oleg <b>(1993)</b> Set-summation. — Novosibirsk: Nauka. — 137 p.
* Vorobyev Oleg <b>(1993)</b> Set-summation. — Novosibirsk: Nauka. — 137 p.
* [http://www.bs-books.ru/ws/14/1389.htm Kovyazin S.A. <b>(1999)</b> Mean measure set. — Probability and Mathematical Statistics. Encyclopaedia. Ed. Yu.V.Prokhorov. Moscow: BRE.<br> (''Mean measure set: Vorob’ov’s means''. – p.644.)]  
* [http://www.bs-books.ru/ws/14/1389.htm Kovyazin S.A. <b>(1999)</b> Mean measure set. — Probability and Mathematical Statistics. Encyclopaedia. Ed. Yu.V.Prokhorov. Moscow: BRE.<br> (''Mean measure set: Vorobyev’s means''. – p.644.)]  
* [http://narod.ru/disk/874152000/VorobyovOleg~2007~Eventology~435p.rar.html Vorob'ov Oleg <b>(2007)</b> Eventology. — Krasnoyarsk: Siberian Federal University. — 435p.]
* [http://narod.ru/disk/874152000/VorobyovOleg~2007~Eventology~435p.rar.html Vorobyev Oleg <b>(2007)</b> Eventology. — Krasnoyarsk: Siberian Federal University. — 435p.]
 
== Remarks ==
<references/>


== References ==
== References ==
* {{note|Blyth}} Blyth C.R. (1972) On Simpson's Paradox and the Sure --- Thing Principle. - Journal of the American Statistical Association, June, 67, P.367-381.
*Blyth C.R. (1972) On Simpson's Paradox and the Sure --- Thing Principle. - Journal of the American Statistical Association, June, 67, P.367-381.
* {{note|DuboisPrade}}Dubois D., H.Prade (1988) Possibility theory. - New York: Plenum Press.
*Feynman R.P. (1982) Simulating physics with computers. - International Journal of Theoretical Physics, Vol. 21, nos. 6/7, 467-488.
* {{note|Feynman}}Feynman R.P. (1982) Simulating physics with computers. - International Journal of Theoretical Physics, Vol. 21, nos. 6/7, 467-488.
*Fr'echet M. (1935) G'en'eralisations du th'eor'eme des probabilit'es totales - Fundamenta Mathematica. - 25.
* Fr'echet M. (1935) G'en'eralisations du th'eor'eme des probabilit'es totales - Fundamenta Mathematica. - 25.
*Nelsen R.B. (1999) An Introduction to Copulas. - Lecture Notes in Statistics, Springer-Verlag, New York, v.139.
* {{note|Hajek}} [http://plato.stanford.edu/archives/sum2003/entries/probability-interpret Hajek, Alan (2003) Interpretations of Probability. - The Stanford Encyclopedia of Philosophy (Summer 2003 Edition), Edward N.Zalta (ed.)]
*[http://nobelprize.org/nobel_prizes/economics/laureates/2002/smith-lecture.pdf Smith Vernon (2002) Nobel Lecture.]  
* {{note|Herrnstein}}Herrnstein R.J. (1961) Relative and Absolute strength of Response as a Function of Frequency of Reinforcement. - Journal of the Experimental Analysis of Behavior, 4, 267-272.
*Stoyan D., and H. Stoyan (1994) Fractals, Random Shapes and Point Fields. - Chichester: John Wiley & Sons.
* {{note|Kahneman}}Kahneman D., Tversky A. (1979) Prospect theory: An analysis of decisios under risk. - Econometrica, 47, 313-327.
* {{note|Lefebvre}}Lefebvre V.A. (2001) Algebra of conscience. - Kluwer Academic Publishers. Dordrecht, Boston, London.
* {{note|Markowitz}}[http://r-events.narod.ru/0-papers/Markowitz1952-p0060.pdf Markowitz Harry (1952) Portfolio Selection. - The Journal of Finance. Vol. VII, No. 1, March, 77-91.]
* {{note|Marshall}}Marshall Alfred [http://socserv2.socsci.mcmaster.ca/~econ/ugcm/3ll3/marshall/ A collection of Marshall's published works]
* Nelsen R.B. (1999) An Introduction to Copulas. - Lecture Notes in Statistics, Springer-Verlag, New York, v.139.
* {{note|Russell1}}Russell Bertrand (1945) ''[[History of Western Philosophy (Russell)|A History of Western Philosophy and Its Connection with Political and Social Circumstances from the Earliest Times to the Present Day]]'', New York: Simon and Schuster.
* {{note|Russell2}}Russell Bertrand (1948) ''Human Knowledge: Its Scope and Limits'', London: George Allen & Unwin.
* {{note|Schrodinger}}Schrodinger Erwin (1959) Mind and Matter. - Cambridge, at the University Press.
* {{note|Shafer}}Shafer G. (1976). A Mathematical Theory of Evidence. – Princeton University Press.
* {{note|Smith}}[http://nobelprize.org/nobel_prizes/economics/laureates/2002/smith-lecture.pdf Smith Vernon (2002) Nobel Lecture.]  
* {{note|StoyanStoyan}}Stoyan D., and H. Stoyan (1994) Fractals, Random Shapes and Point Fields. - Chichester: John Wiley & Sons.
* {{note|Tversky}}Tversky A., Kahneman D. (1992) Advances in prospect theory: cumulative representation of uncertainty. - Journal of Risk and Uncertainty, 5, 297-323.
* {{note|Vickrey}}Vickrey William [http://www.u.arizona.edu/~dreiley/papers/VickreyHistory.pdf Paper on the history of Vickrey auctions in stamp collecting]
* {{note|Zadeh1}}Zadeh L.A. (1965) Fuzzy Sets. - Information and Control. - Vol.8. - P.338-353.
* {{note|Zadeh2}}Zadeh L.A. (1968) Probability Measures of Fuzzy Events. - Journal of Mathematical Analysis and Applications. - Vol.10. - P.421-427.
* {{note|Zadeh3}}Zadeh L.A. (1978). Fuzzy Sets as a Basis for a Theory of Possibility. – Fuzzy Sets and Systems. - Vol.1. - P.3-28.
* {{note|Zadeh4}}Zadeh L.A. (2005). Toward a Generalized Theory of Uncertainty (GTU) - An Outline. - Information sciences (to appear).
* {{note|Zadeh5}}Zadeh L.A. (2005). Toward a computational theory of precisiation of meaning based on fuzzy logic - the concept of cointensive precisiation. - Proceedings of IFSA-2005 World Congress.} - Beijing: Tsinghua University Press, Springer.
 
 


== External links ==
== External links ==

Revision as of 19:32, 8 August 2008

Eventology (from lat. eventum, eventus — event, outcome, success, destiny and + logos) is a scientific theory that studies eventful nature of a mind and a matter[1]; a huge event variety of subjects (mind) and objects (matter); an event structure and event-valued functions; an origin, expansion, and development of sets of events; connections of events with each other; establishes the general and particular laws of eventful existence of a mind and a matter in all event occurrences and event properties.

In a basis of eventology lays remarks, which now seems obvious: «the matter and the mind is simply convenient way of linkage of events together» (Russell[2][3], 1946; Vorobyev, 2001) and «the mind appears there and then, where and when there is an ability to make a probabilistic choice» (Lefebvre[4][5], 2003). Using these remarks as initial axioms and also well-developed apparatus of mathematical eventology (crisp and fuzzy), eventology introduces mind directly as an eventological distribution of set of events in scientific and mathematical research and understands an eventological movement of events (movement of a matter or a mind) as changing the eventological distributions.

From the point of eventology view, the probability is a property of an event: an event has a probability the same as the probability has an event; subjective probability[6] property of a subjective event. Such point of view allows to develop the eventological theory of fuzzy events which exclusively from positions of Kolmogorov’s axiomatics of probability theory offers the strictly proved general approach to the eventological description of various kinds of fuzziness and uncertainty, including those kinds to which possibility theory[7], Dempster-Shafer theory of evidence[8], fuzzy sets and fuzzy logic of Zadeh[9][10][11][12][13], etc. are devoted.

Alongside with philosophical questions, eventology also mentions economic, social and other questions in different applied fields of natural and human sciences (see «Eventology and its applications»).

Historical survey

The first isolated attempts to cognize a mind and a matter from the point of view of an event, have been made during antique times (Aristotle, Plato, Sokrat). Elaborated through Renaissance antique ideas initiated modern scientific knowledge. Rapt observations upon event occurrence laid the foundation of probability theory in the 16th century (Pascal, Ferma). In the beginning of the 20th century it has turned into the scientific discipline, which leaned over mathematical definition of event as a subset of space of elementary events (Kolmogorov, 1933); basically it was intended for «calculating probabilities of events from probabilities of other events» («Mathematical encyclopedic dictionary» (ed. Yu.V.Prokhorov), MED, 1988; Encyclopedia «Probability and Mathematical Statistics» (ed. Yu.V.Prokhorov), PMS, 1995). During the 19-20 c. experimental methods of observing upon events was thriving, as the result mathematical statistics arose – the scientific discipline focused on the solving problems, which are in the certain sense inverse to problems of probability theory, – estimation of probability distributions by results of observations upon events.

The further development of probability theory has expanded the known eventful world of subjects and objects; has deepened the conception of it's eventful structure. At the same time speculative theories of eventful development and properties of a mind and a matter still prevailed. Sharply increased number of studied eventful objects (new eventful methods, penetration eventful techniques in various areas of knowledge), accumulation and differentiation of eventful knowledge formed a variety of application fields for eventful methodology.

One of the main achievements on a boundary of millenia is an association of separated eventful approaches and methods by the general name – «eventology» (the scientific theory directed on studying sets of events), and also creation of mathematical eventology (crisp and fuzzy) – the new branch, which has arisen within the probability theory. It studies eventological distributions of sets of events, structures of its dependences and leans over the new principle of eventological duality of notion «a set of random events» and «a random set of events»

The development of eventology in 21 century has two characteristic and interconnected tendencies. On the one hand, mathematical eventology develops; it has reached amazing successes, since 90th years of the last century has opened and isolated mathematical bases of the theory of dependences of sets of events. On the other hand, the aspiration to complete synthetic eventful knowledge of a mind and a matter has incited the eventological branches studying eventful properties of a mind and a matter at all structural levels of it's organization.

Among the last achievements of eventology are: – the eventological portfolio analysis, which allowed to put and solve so-called inverse eventological Markowitz’s problem (Harry Markowitz[14], the Nobel Prize, 1990) - unknown before. Discovering eventological basis of market «Marshall’s cross»[15]supply and demand cross») in economics; theory «William Vickrey auctions» (William Vickrey[16], the Nobel Prize, 1994); the modern prospect theory (Daniel Kahneman[17][18], the Nobel Prize, 2002), and, at last, the eventological system analysis with an object of research - sets of events – theoretical models of complex systems of events, which describes structures of system connections of any complexity with exhaustive completeness, resulted into fundamental eventological changes.

In each of the areas named above these eventological discoveries have allowed to look at problems with new eventful points of view. This has immediately led to new unexpected statements of problems, which became solvable with eventological methods, adding and improving each of the theories.

Practical significance of eventological researches and methods for a number of the most urgent applied areas, and also penetration into these researches of mathematical ideas and methods of the theory of random events have advanced eventology and the mathematical eventology from the beginning 21 century to the foremost boundaries of natural sciences and human sciences.

Eventological sections on International conferences

PhD theses on eventology (phys.-math. sciences, in Russian)

  • Vorobyev Alexei (1998) Direct and inverse problems for models of spreading space risks. Krasnoyarsk: ICM of RAS
  • Goldenok Ellen (2002) Modeling dependence and interaction structures of random events in statistical systems. Krasnoyarsk: KGTEI
  • Kupriyanova Tatyana (2002) A problem of classification of subsets of random set and its application. Krasnoyarsk: Krasnoyarsk University
  • Semenova Daria (2002) Methods of constructing statistical dependencies of portfolio operations in market systems. Krasnoyarsk: ICM of RAS
  • Fomin Andrew (2002) Set-regressional analysis of dependencies of random events in statistical systems. Krasnoyarsk: ICM of RAS
  • Klotchkov Svyatoslav (2006) Eventological models of distributing and filling resources. Krasnoyarsk: KGTEI
  • Baranova Iren (2006) Methods of bipartitional sets of events in eventological analysis of complicated systems. Krasnoyarsk: Krasnoyarsk University
  • Tyaglova Hellena (2006) Game theory methods of analysis of random sets of events. Krasnoyarsk: ICM of RAS
  • Tarasova Olga (2007) Grid and Regression Algorithms of Approximation of Complicated Systems of Events. Krasnoyarsk: ICM of RAS

Bibliography (in English)

  • Vorobyev O.Yu. (1991) Set-summation. Soviet Math. Dokl. 1991, Vol.43,p.747-752
  • Vorobyev O.Yu. (1993) The calculus of set-distribution. Rissian Acad. Sci., Dokl. Math., 1993, Vol.46, 301-306.
  • Vorobyev O.Yu., A.O.Vorobyev (1994) Summation of set-additive functions anf the Mobius inversion formula. Russian Acad. Sci. Dokl. Math., vol. 49, No. 2, 340-344.
  • Stoyan Dietrich, and Helga Stoyan (1994) Fractals, Random Shapes and Point Fields. Methods of Geometrical Statistics. John Wiley and Sons. Chichester, New York
    (pp.107-116: Vorobyev's means of a random set)
  • Vorobyev O.Yu., A.O.Vorobyev (1996) Inverse problems for generalized Richardson's model of spread. Computational Fluid Dynamics'96, John Wiley & Sons, 104-110.
  • Vorobyev O.Yu. (1996) A random set analysis of fire spread. Fire Technology, NFPA (USA), v.32, N 2, 137--173.
  • Vorobyev Oleg Yu., Arcady A. Novosyolov, Konstantin V. Simonov, and Andrew Yu. Fomin (2001) Portfolio Analysis of Financial Market Risks by Random Set Tools. Risks in Investment Accumulation Products of Financial Institutions. Simposium Proceedings held in January 1999, New York. Schaumburg, USA: The Society of Actuaries, 43--66.

Bibliography (in Russian)

Remarks

  1. Schrödinger Erwin (1959) Mind and Matter. - Cambridge, at the University Press
  2. Russell Bertrand (1945) A History of Western Philosophy and Its Connection with Political and Social Circumstances from the Earliest Times to the Present Day, New York: Simon and Schuster
  3. Russell Bertrand (1948) Human Knowledge: Its Scope and Limits, London: George Allen & Unwin
  4. Lefebvre V.A. (2001) Algebra of conscience. - Kluwer Academic Publishers. Dordrecht, Boston, London
  5. Herrnstein R.J. (1961) Relative and Absolute strength of Response as a Function of Frequency of Reinforcement. - Journal of the Experimental Analysis of Behavior, 4, 267-272
  6. Hajek, Alan (2003) Interpretations of Probability. - The Stanford Encyclopedia of Philosophy (Summer 2003 Edition), Edward N.Zalta (ed.)
  7. Dubois D., H.Prade (1988) Possibility theory. - New York: Plenum Press
  8. Shafer G. (1976). A Mathematical Theory of Evidence. – Princeton University Press
  9. Zadeh L.A. (1965) Fuzzy Sets. - Information and Control. - Vol.8. - P.338-353
  10. Zadeh L.A. (1968) Probability Measures of Fuzzy Events. - Journal of Mathematical Analysis and Applications. - Vol.10. - P.421-427
  11. Zadeh L.A. (1978). Fuzzy Sets as a Basis for a Theory of Possibility. – Fuzzy Sets and Systems. - Vol.1. - P.3-28
  12. Zadeh L.A. (2005). Toward a Generalized Theory of Uncertainty (GTU) - An Outline. - Information sciences
  13. Zadeh L.A. (2005). Toward a computational theory of precisiation of meaning based on fuzzy logic - the concept of cointensive precisiation. - Proceedings of IFSA-2005 World Congress.} - Beijing: Tsinghua University Press, Springer
  14. Markowitz Harry (1952) Portfolio Selection. - The Journal of Finance. Vol. VII, No. 1, March, 77-91.
  15. Marshall Alfred: A collection of Marshall's published works
  16. Vickrey William: Paper on the history of Vickrey auctions in stamp collecting
  17. Kahneman D., Tversky A. (1979) Prospect theory: An analysis of decisios under risk. - Econometrica, 47, 313-327
  18. Tversky A., Kahneman D. (1992) Advances in prospect theory: cumulative representation of uncertainty. - Journal of Risk and Uncertainty, 5, 297-323

References

  • Blyth C.R. (1972) On Simpson's Paradox and the Sure --- Thing Principle. - Journal of the American Statistical Association, June, 67, P.367-381.
  • Feynman R.P. (1982) Simulating physics with computers. - International Journal of Theoretical Physics, Vol. 21, nos. 6/7, 467-488.
  • Fr'echet M. (1935) G'en'eralisations du th'eor'eme des probabilit'es totales - Fundamenta Mathematica. - 25.
  • Nelsen R.B. (1999) An Introduction to Copulas. - Lecture Notes in Statistics, Springer-Verlag, New York, v.139.
  • Smith Vernon (2002) Nobel Lecture.
  • Stoyan D., and H. Stoyan (1994) Fractals, Random Shapes and Point Fields. - Chichester: John Wiley & Sons.

External links

See also