Entire function: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Dmitrii Kouznetsov
imported>Dmitrii Kouznetsov
Line 36: Line 36:


In particular, non-analytic functions also should be qualified as non-entire:
In particular, non-analytic functions also should be qualified as non-entire:
[[real part|<math>\Re</math]],
[[real part|<math>\Re</math>]],
[[imaginary part|<math>\Im</math]],
[[imaginary part|<math>\Im</math>]],
[[complex conjugation]],
[[complex conjugation]],
[[modulus]],  
[[modulus]],  
Line 77: Line 77:
Should I sign the stubs I write?  Kouznetsov
Should I sign the stubs I write?  Kouznetsov
!-->
!-->
==See also==
==See also==
*[[Cauchi formula]]
*[[Cauchi formula]]

Revision as of 00:40, 17 May 2008

Definition

Template:Under construction

In the mathematical analysis and, in particular, in the theory of functions of complex variable, The entire function is function that is holomorphic in the whole complex plane [1][2].

Examples

Entires

Examples of entire functions are the polynomials and the exponentials. All sums, products and compositions of these functions also are entire functions.

All the derivatives and some of integrals of entired funcitons, for example erf, Si, , also are entired functions.

Every entire function can be represented as a power series or Tailor expansion which converges everywhere.

Non-entires

In general, neither series nor limit of a sequence of entire funcitons needs to be an entire function.

Inverse of an entire function has no need to be entire function. Usually, invetse of a non-trivial function is not entire. (The inverse of the linear function is entire). In particular, inverse of trigonometric functions are not entire.

More non-entire functions: rational function at any complex , , , square root, logarithm, function Gamma, tetration.

In particular, non-analytic functions also should be qualified as non-entire: , , complex conjugation, modulus, argument, Dirichlet function.

Properties

Infinitness

Liouville's theorem establishes an important property of entire functions — an entire function which is bounded must be constant [3].

Range of values

Picard's little theorem states: a non-constant entire function takes on every complex number as value, except possibly one [2].

For example, the exponential never takes on the value 0.

Cauchi integral

Entire function , at any complex and at any contour C evolving point just once, can be expressed with Cauchi theorem



See also

References

Template:Stub

  1. Conway, John B. (1978). Functions of One Complex Variable I, 2nd edition. Springer. ISBN 0-387-90328-3. 
  2. 2.0 2.1 Boas, Ralph P.. Entire Functions. Academic Press. OCLC 847696.  Cite error: Invalid <ref> tag; name "ralph" defined multiple times with different content
  3. Conway, John B. (1978). Functions of One Complex Variable I, 2nd edition. Springer. ISBN 0-387-90328-3.