Cross product: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>David E. Volk
No edit summary
imported>Paul Wormer
(Made it into redirect to vector product)
 
(8 intermediate revisions by 3 users not shown)
Line 1: Line 1:
The cross product, or vector product, is a type of [[vector space|vector]] multiplication in the Euclidean spaces, and is widely used in many areas of mathematics and physics. In <math>\mathbb{R}^3</math> there is another type of multiplication called the [[dot product]] ( or scalar product), but it is only defined and makes sense in general for this particular vector space. Both the dot product and the cross product are widely used in in the study of optics, mechanics, electromagnetism, and gravitational fields, for example. 
#REDIRECT [[vector product]]
 
=== Definition ===
Given two vectors, <b>A</b> = (A<sub>1</sub>, ... ,A<sub>n</sub>) and <b>B</b> = (B<sub>1</sub>, ... ,B<sub>n</sub>) in <math>\mathbb{R}^n</math> with <math>1\leq n \leq 3</math>, the cross product is defined as the vector product of the magnitude of <b>A</b>, the magnitude of <b>B</b>, the sine of the smaller angle between them, and a unit vector (<b>a<sub>N</sub></b>) that is perpendicular (or normal to) the plane containing vectors <b>A</b> and <b>B</b> and which follows the right-hand rule (see below). 
 
<b>A</b> <b>x</b> <b>B</b> = <b>a<sub>N</sub></b> |<b>A</b>||<b>B</b>|sinθ<sub>AB</sub>
 
 
where <math>|\mathbf A|=(\mathbf A \cdot \mathbf A)^{1/2}</math> and <math>|\mathbf B|=(\mathbf B \cdot \mathbf B)^{1/2}</math> are, respectively, the magnitudes of <b>A</b> and <b>B</b>. See [[dot product]] for the evaluation of this equation.
 
 
Reversing the order of the vectors <b>A</b> and <b>B</b> results in a unit vector in the opposite direction, meaning that the cross product is not commutative, and thus:
 
 
<b>B</b> <b>x</b> <b>A</b> = -(<b>A</b> <b>x</b> <b>B</b>)
 
The cross product of any vector with itself (or another parallel vector) is zero because the sin(0)=0.
 
<b>A</b> <b>x</b> <b>A</b> = 0
 
 
=== Another formulation ===
 
Rather than determining the angle and perpendicular unit vector to solve the cross product,  the form below is often used to solve the cross product in <math>\mathbb{R}^3</math>.
 
 
<b>A</b> <b>x</b> <b>B</b> = (A<sub>y</sub>B<sub>z</sub> - A<sub>z</sub>B<sub>y</sub>)<b>a</b><sub>x</sub> + (A<sub>z</sub>B<sub>x</sub> - A<sub>x</sub>B<sub>z</sub>)<b>a</b><sub>y</sub> + (A<sub>x</sub>B<sub>y</sub> - A<sub>y</sub>B<sub>x</sub>)<b>a</b><sub>z</sub>
 
[[Category:CZ Live]]
[[Category:Physics Workgroup]]
[[Category:Mathematics Workgroup]]

Latest revision as of 03:59, 5 January 2008

Redirect to: