Multi-index: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Aleksander Stos
m (reword)
imported>Joe Quick
m (subpages)
 
Line 1: Line 1:
{{subpages}}
In mathematics, '''multi-index''' is an ''n''-tuple of non-negative integers. Multi-indices are widely used in multivariable analysis to denote e.g. partial derivatives and multidimensional power function. Many formulas known from the one dimension one (i.e. the real line) carry on to <math>\mathbb{R}^n</math> by simple replacing usual indices with multi-indices.
In mathematics, '''multi-index''' is an ''n''-tuple of non-negative integers. Multi-indices are widely used in multivariable analysis to denote e.g. partial derivatives and multidimensional power function. Many formulas known from the one dimension one (i.e. the real line) carry on to <math>\mathbb{R}^n</math> by simple replacing usual indices with multi-indices.


Line 16: Line 17:
:<math> D^\alpha f = \frac{\partial^{|\alpha|}f}{\partial x_1^{\alpha_1}\partial x_2^{\alpha_2}\cdots \partial x_n^{\alpha_n}}</math>
:<math> D^\alpha f = \frac{\partial^{|\alpha|}f}{\partial x_1^{\alpha_1}\partial x_2^{\alpha_2}\cdots \partial x_n^{\alpha_n}}</math>
:Remark: sometimes the symbol <math>\partial^\alpha</math> instead of <math>D^\alpha</math> is used.
:Remark: sometimes the symbol <math>\partial^\alpha</math> instead of <math>D^\alpha</math> is used.
[[Category:CZ Live]]
[[Category:Mathematics Workgroup]]
[[Category:Stub Articles]]

Latest revision as of 03:55, 26 December 2007

This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In mathematics, multi-index is an n-tuple of non-negative integers. Multi-indices are widely used in multivariable analysis to denote e.g. partial derivatives and multidimensional power function. Many formulas known from the one dimension one (i.e. the real line) carry on to by simple replacing usual indices with multi-indices.

Formally, multi-index is defined as

, where

Basic definitions and notational conventions using multi-indices.

  • The order or length of
  • Factorial of a multi-index
  • multidimensional power notation
If and is a multi-index then is defined as
  • The following notation is used for partial derivatives of a function
Remark: sometimes the symbol instead of is used.