imported>Subpagination Bot |
imported>Paul Wormer |
Line 21: |
Line 21: |
| (-1)^m I^{-m}_\ell(\mathbf{r}) R^{m}_\ell(\mathbf{r}')\quad\hbox{with}\quad |\mathbf{r}| > |\mathbf{r}'|, | | (-1)^m I^{-m}_\ell(\mathbf{r}) R^{m}_\ell(\mathbf{r}')\quad\hbox{with}\quad |\mathbf{r}| > |\mathbf{r}'|, |
| </math> | | </math> |
| where <math>I^{m}_\ell</math> is an irregular solid harmonic and <math>R^{m}_\ell</math> is a regular solid harmonic. | | where <math>R^{m}_\ell</math> is a ''regular solid harmonic'': |
| | :<math> |
| | R^m_{\ell}(\mathbf{r}) \equiv \sqrt{\frac{4\pi}{2\ell+1}}\; r^\ell Y^m_{\ell}(\theta,\varphi), |
| | </math> |
| | and <math>I^{m}_\ell</math> is an ''irregular solid harmonic'': |
| | :<math> |
| | I^m_{\ell}(\mathbf{r}) \equiv \sqrt{\frac{4\pi}{2\ell+1}} \; \frac{ Y^m_{\ell}(\theta,\varphi)}{r^{\ell+1}} . |
| | </math> |
|
| |
|
| ==Derivation== | | ==Derivation== |
Revision as of 05:29, 12 December 2008
In physics, the Laplace expansion of a 1/r - type potential is applied to expand Newton's gravitational potential or Coulomb's electrostatic potential. In quantum mechanical calculations on atoms the expansion is used in the evaluation of integrals of the interelectronic repulsion.
The expansion
The Laplace expansion is in fact the expansion of the inverse distance between two points. Let the points have position vectors r and r', then the Laplace expansion is
![{\displaystyle {\frac {1}{|\mathbf {r} -\mathbf {r} '|}}=\sum _{\ell =0}^{\infty }{\frac {4\pi }{2\ell +1}}\sum _{m=-\ell }^{\ell }(-1)^{m}{\frac {r_{\scriptscriptstyle <}^{\ell }}{r_{\scriptscriptstyle >}^{\ell +1}}}Y_{\ell }^{-m}(\theta ,\varphi )Y_{\ell }^{m}(\theta ',\varphi ').}](https://wikimedia.org/api/rest_v1/media/math/render/svg/21c879c6bfd50115d23239b5691e65f8b6fde831)
Here r has the spherical polar coordinates (r, θ, φ) and r'
has ( r', θ', φ').
Further r<
is min(r, r')
and r> is max(r, r').
The function
is a normalized spherical harmonic function. The expansion takes a simpler form when written in terms of solid harmonics,
![{\displaystyle {\frac {1}{|\mathbf {r} -\mathbf {r} '|}}=\sum _{\ell =0}^{\infty }\sum _{m=-\ell }^{\ell }(-1)^{m}I_{\ell }^{-m}(\mathbf {r} )R_{\ell }^{m}(\mathbf {r} ')\quad {\hbox{with}}\quad |\mathbf {r} |>|\mathbf {r} '|,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8f5348058b0233fd722371be0ab2a23f879631e1)
where
is a regular solid harmonic:
![{\displaystyle R_{\ell }^{m}(\mathbf {r} )\equiv {\sqrt {\frac {4\pi }{2\ell +1}}}\;r^{\ell }Y_{\ell }^{m}(\theta ,\varphi ),}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f16490a342dc3fad7248d537b3dc9b6f1035d014)
and
is an irregular solid harmonic:
![{\displaystyle I_{\ell }^{m}(\mathbf {r} )\equiv {\sqrt {\frac {4\pi }{2\ell +1}}}\;{\frac {Y_{\ell }^{m}(\theta ,\varphi )}{r^{\ell +1}}}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/10df3b7517c43aba222a0bf00de09034058235c1)
Derivation
The derivation of this expansion is simple. One writes
![{\displaystyle {\frac {1}{|\mathbf {r} -\mathbf {r} '|}}={\frac {1}{\sqrt {r^{2}+(r')^{2}-2rr'\cos \gamma }}}={\frac {1}{r_{\scriptscriptstyle >}{\sqrt {1+h^{2}-2h\cos \gamma }}}}\quad {\hbox{with}}\quad h\equiv {\frac {r_{\scriptscriptstyle <}}{r_{\scriptscriptstyle >}}}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4e721f711e81ee53ec72542758949f6154f0a255)
We find here the generating function of the Legendre polynomials
:
![{\displaystyle {\frac {1}{\sqrt {1+h^{2}-2h\cos \gamma }}}=\sum _{\ell =0}^{\infty }h^{\ell }P_{\ell }(\cos \gamma ).}](https://wikimedia.org/api/rest_v1/media/math/render/svg/92ec31be84154e0c84d8c3fd551924ea55d36f3e)
Use of the spherical harmonic addition theorem
![{\displaystyle P_{\ell }(\cos \gamma )={\frac {4\pi }{2\ell +1}}\sum _{m=-\ell }^{\ell }Y_{\ell }^{-m}(\theta ,\varphi )Y_{\ell }^{m}(\theta ',\varphi ')}](https://wikimedia.org/api/rest_v1/media/math/render/svg/693e857e8ca8eacf30c769b971397859f0c6fe1e)
gives the desired result.