Fuzzy control: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Giangiacomo Gerla
No edit summary
imported>Giangiacomo Gerla
No edit summary
Line 34: Line 34:
These extend the above-mentioned fuzzy logics by adding [[universal quantifier|universal]] and [[existential quantifier]]s in a manner similar to the way that [[predicate logic]] is created from [[propositional logic]] (to be completed).
These extend the above-mentioned fuzzy logics by adding [[universal quantifier|universal]] and [[existential quantifier]]s in a manner similar to the way that [[predicate logic]] is created from [[propositional logic]] (to be completed).


=== Effectiveness for fuzzy set theory ===
The notions of a "[[decidable subset]]" and "[[recursively enumerable]] subset" are basic ones for classical mathematics and classical logic. Then, the question of a suitable extension of such concepts to fuzzy set theory arises. A first proposal in such a direction was made by [[E.S. Santos]] by the notions of ''fuzzy [[Turing machine]]'', ''Markov normal fuzzy algorithm'' and ''fuzzy program''. Successively, [[L. Biacino]] and [[G. Gerla]] proposed the following definition where ''Ü'' denotes the set of rational numbers in [0,1].
'''Definition''' A fuzzy subset μ : ''S'' <math>\rightarrow</math>[0,1] of a set ''S'' is ''recursively enumerable'' if a recursive map ''h'' : ''S''×''N'' <math>\rightarrow</math>''Ü'' exists such that, for every ''x'' in ''S'', the function ''h''(''x'',''n'') is increasing with respect to ''n'' and μ(''x'') = lim ''h''(''x'',''n'').
We say that μ is ''decidable'' if both μ and its complement –μ are recursively enumerable.


An extension of such a theory to the general case of the L-subsets is proposed in a paper by G. Gerla. In such a paper one refer to the theory of effective domains.
An extension of such a theory to the general case of the L-subsets is proposed in a paper by G. Gerla. In such a paper one refer to the theory of effective domains.

Revision as of 02:36, 28 June 2007

By the expression Fuzzy logic one denotes several topics which are related with the notion of fuzzy subset defined in 1965 by Lotfi Zadeh at the University of California, Berkeley. Given a nonempty set S, a fuzzy subset of S is a map s from S into the interval [0,1]. Then elements in [0,1] are interpreted as truth values and, in accordance, for every x in S, the value s(x) is interpreted as a membership degree of x to s. In other words, a fuzzy subset is a characteristic function in which graded truth values are admitted. The notion of fuzzy subset enables us to represent the extension of predicates and relations as "big","slow", "near" "similar", which are vague in nature. Observe that there are two possible interpretations of the word "fuzzy logic". The first one is related with an informal utilization of the notion of fuzzy set and it is devoted to the applications. In such a case should be better expressions as "fuzzy set theory" or "fuzzy logic in board sense". Another interpretation is given in considering fuzzy logic as a chapter of formal logic. In such a case one uses the expression "fuzzy logic in narrow sense" or "formal fuzzy logic".

Fuzzy logic and probability

Many peoples compare fuzzy logic with probability theory since both refer to the interval [0,1]. However, they are conceptually distinct since we have not confuse a degree of truth with a probability measure. To illustrate the difference, consider the following example: Let be the claim "the rose on the table is red" and imagine we can freely examine the rose (complete knowledge) but, as a matter of fact, the color looks not exactly red. Then is neither fully true nor fully false and we can express that by assigning to a truth value, as an example 0.8, different from 0 and 1 (fuzziness). This truth value does not depend on the information we have since this information is complete.

Now, imagine a world in which all the roses are either clearly red or clearly yellow. In such a world is either true or false but, inasmuch as we cannot examine the rose on the table, we are not able to know what is the case. Nevertheless, we have an opinion about the possible color of that rose and we could assign to a number, as an example 0.8, as a subjective measure of our degree of belief in (probability). In such a case this number depends strongly from the information we have and, for example, it can vary if we have some new information on the taste of the possessor of the rose.

Different formal fuzzy logics

There are several different fuzzy logics depending on the interpretation of the logical connectives. In Zadeh's original papers the logical operators are usually interpreted by the operations , -defined by setting for every x and y in [0,1]:


= minimum(x, y)

= maximum(x,y)

- = 1 - x.

Further interpretations of the connectives

Zadeh's definitions of the connectives are not the only possible. We list the main definitions.

All these logics encompass the traditional propositional logic (whose models correspond to Boolean algebras).

Predicate fuzzy logics

These extend the above-mentioned fuzzy logics by adding universal and existential quantifiers in a manner similar to the way that predicate logic is created from propositional logic (to be completed).


An extension of such a theory to the general case of the L-subsets is proposed in a paper by G. Gerla. In such a paper one refer to the theory of effective domains. It is an open question to give supports for a Church thesis for fuzzy logic claiming that the proposed notion of recursive enumerability for fuzzy subsets is the adequate one. To this aim, further investigations on the notions of fuzzy grammar and fuzzy Turing machine should be necessary (see for example Wiedermann's paper).

See also

Bibliography

  • Chang C. C.,Keisler H. J., Continuous Model Theory, Princeton University Press, Princeton, 1996.
  • Cignoli R., D’Ottaviano I. M. L. , Mundici D. , ‘’Algebraic Foundations of Many-Valued Reasoning’’. Kluwer, Dordrecht, 1999.
  • Cox E., The Fuzzy Systems Handbook (1994), ISBN 0-12-194270-8
  • Elkan C.. The Paradoxical Success of Fuzzy Logic. November 1993. Available from Elkan's home page.
  • Hájek P., Metamathematics of fuzzy logic. Kluwer 1998.
  • Hájek P., Fuzzy logic and arithmetical hierarchy, Fuzzy Sets and Systems, 3, (1995), 359-363.
  • Höppner F., Klawonn F., Kruse R. and Runkler T., Fuzzy Cluster Analysis (1999), ISBN 0-471-98864-2.
  • Klir G. and Folger T., Fuzzy Sets, Uncertainty, and Information (1988), ISBN 0-13-345984-5.
  • Klir G. , UTE H. St. Clair and Bo Yuan Fuzzy Set Theory Foundations and Applications,1997.
  • Klir G. and Bo Yuan, Fuzzy Sets and Fuzzy Logic (1995) ISBN 0-13-101171-5
  • Bart Kosko, Fuzzy Thinking: The New Science of Fuzzy Logic (1993), Hyperion. ISBN 0-7868-8021-X
  • Montagna F., Three complexity problems in quantified fuzzy logic. Studia Logica, 68,(2001), 143-152.
  • Novák V., Perfilieva I, Mockor J., Mathematical Principles of Fuzzy Logic, Kluwer Academic Publishers, Dordrecht, (1999).
  • Yager R. and Filev D., Essentials of Fuzzy Modeling and Control (1994), ISBN 0-471-01761-2
  • Zimmermann H., Fuzzy Set Theory and its Applications (2001), ISBN 0-7923-7435-5.
  • Kevin M. Passino and Stephen Yurkovich, Fuzzy Control, Addison Wesley Longman, Menlo Park, CA, 1998.
  • Wiedermann J. , Characterizing the super-Turing computing power and efficiency of classical fuzzy Turing machines, Theor. Comput. Sci. 317, (2004), 61-69.
  • Zadeh L.A., Fuzzy algorithms, Information and Control, 5,(1968), 94-102.
  • Zadeh L.A., Fuzzy Sets, ‘’Information and Control’’, 8 (1965) 338­353.
  • Zemankova-Leech, M., Fuzzy Relational Data Bases (1983), Ph. D. Dissertation, Florida State University.