Pauli spin matrices: Difference between revisions
Jump to navigation
Jump to search
imported>Michael Underwood (→Algebraic Properties: Put \mbox{} around the words 'det', 'Tr', and 'eigenvalues') |
imported>Michael Hardy No edit summary |
||
Line 14: | Line 14: | ||
==Algebraic Properties== | ==Algebraic Properties== | ||
<math>\sigma_x^2=\sigma_y^2=\sigma_z^2=I</math><br/> | |||
For i=1,2,3: | : <math>\sigma_x^2=\sigma_y^2=\sigma_z^2=I</math><br/> | ||
:<math>\mbox{det}(\sigma_i)=-1</math> | |||
:<math>\mbox{Tr}(\sigma_i)=0</math> | For ''i'' = 1, 2, 3: | ||
:<math>\mbox{det}(\sigma_i)=-1</math> | |||
:<math>\mbox{Tr}(\sigma_i)=0</math> | |||
:<math>\mbox{eigenvalues}=\pm 1</math> | :<math>\mbox{eigenvalues}=\pm 1</math> | ||
Revision as of 19:50, 22 August 2007
The Pauli spin matrices are a set of unitary Hermitian matrices which form an orthogonal basis (along with the identity matrix) for the real Hilbert space of 2x2 Hermitian matrices and for the complex Hilbert spaces of all 2x2 matrices. They are usually denoted:
Algebraic Properties
For i = 1, 2, 3:
Commutation relations
The Pauli matrices obey the following commutation and anticommutation relations:
- where is the Levi-Civita symbol, is the Kronecker delta, and I is the identity matrix.
The above two relations can be summarized as:
- .