Chemical elements: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Anthony.Sebastian
(slight elaboration of 'commpound' example)
imported>Anthony.Sebastian
(tweaking the 'Dalton' sentence in Intro)
Line 2: Line 2:
{{TOC|right}}
{{TOC|right}}


'''Chemical elements''' are those particular types of [[matter]] that serve as the building blocks of all other types of matter.  To quote chemist Peter Atkins, they are "''the substances from which everything tangible is made.''"<ref name=atkinsperking>{{cite book|author=P.W. Atkins PW|title=The Periodic Kingdom: A Journey into the Land of the Chemical Elements|edition|publisher=Basic Books|year=1995|id=ISBN 0-465-07265-0}} [http://www.questia.com/read/91054371 Full-Text] (See page 3)</ref>  Each element type consists of a single type of [[atom]], distinguishable from other element types by virtue of the unique number of [[proton]]s in the [[Nucleus (atomic)|nucleus]] of each of its atoms. That gives each element type a unique [[atomic number]], ''Z'', which is the number of protons in each nucleus.<ref name=scott1994>{{cite book|author=Mary Eagleson|title=Concise Encyclopedia of Chemistry|edition= Revised and translated edition|publisher=Walter de Gruyter|year=1994|id=ISBN 3-11-011451-8}}</ref> Prior to [[John Dalton]]'s introduction of a quantitative atomic theory, an element had been defined as a substance that neither ordinary physical nor chemical methods could decompose into simpler substances.
'''Chemical elements''' are those particular types of [[matter]] that serve as the building blocks of all other types of matter.  To quote chemist Peter Atkins, they are "''the substances from which everything tangible is made.''"<ref name=atkinsperking>{{cite book|author=P.W. Atkins PW|title=The Periodic Kingdom: A Journey into the Land of the Chemical Elements|edition|publisher=Basic Books|year=1995|id=ISBN 0-465-07265-0}} [http://www.questia.com/read/91054371 Full-Text] (See page 3)</ref>  Each element type consists of a single type of [[atom]], distinguishable from other element types by virtue of the unique number of [[proton]]s in the [[Nucleus (atomic)|nucleus]] of each of its atoms. That gives each element type a unique [[atomic number]], ''Z'', which is the number of protons in each nucleus.<ref name=scott1994>{{cite book|author=Mary Eagleson|title=Concise Encyclopedia of Chemistry|edition= Revised and translated edition|publisher=Walter de Gruyter|year=1994|id=ISBN 3-11-011451-8}}</ref> Prior to [[John Dalton]]'s development and promulgation of a quantitative atomic theory, an element had been defined as a substance that neither physical nor chemical methods could decompose into simpler substances, and some introductory chemistry textbooks still give that older primary definition.


On Earth, 94 elements with different atomic numbers occur in nature, each characterized by a unique set of physical and chemical properties.<ref>[http://mysite.du.edu/~jcalvert/phys/92.htm 92 Naturally Occurring Elements?] According to James B. Calvert, Associate Professor Emeritus of Engineering, University of Denver: the trite phrase "the 92 naturally-occurring chemical elements" is often seen, but is incorrect.</ref>  
On Earth, 94 elements with different atomic numbers occur in nature, each characterized by a unique set of physical and chemical properties.<ref>[http://mysite.du.edu/~jcalvert/phys/92.htm 92 Naturally Occurring Elements?] According to James B. Calvert, Associate Professor Emeritus of Engineering, University of Denver: the trite phrase "the 92 naturally-occurring chemical elements" is often seen, but is incorrect.</ref>  

Revision as of 19:21, 17 July 2009

This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

Chemical elements are those particular types of matter that serve as the building blocks of all other types of matter. To quote chemist Peter Atkins, they are "the substances from which everything tangible is made."[1] Each element type consists of a single type of atom, distinguishable from other element types by virtue of the unique number of protons in the nucleus of each of its atoms. That gives each element type a unique atomic number, Z, which is the number of protons in each nucleus.[2] Prior to John Dalton's development and promulgation of a quantitative atomic theory, an element had been defined as a substance that neither physical nor chemical methods could decompose into simpler substances, and some introductory chemistry textbooks still give that older primary definition.

On Earth, 94 elements with different atomic numbers occur in nature, each characterized by a unique set of physical and chemical properties.[3]

People from all walks of everyday life know something about many different elements, even if they do not recognize them as chemical elements. They include: Helium (He), used to make party balloons float, Lithium (Li), used to make batteries for cellphones, Oxygen (O), in the air we breathe, Neon (Ne), in 'neon' lights, Sodium (Na), which is present in table salt that nutritionists advise using sparingly in foods and Aluminum (Al), used as foil for wrapping leftovers.

All matter directly perceptible by the human senses — whether solid, liquid or gas — is composed of one or more elements. Typically, elements are found in nature in the form of populations of atoms, often with the atoms of other elements, as compounds (e.g., iron ore, a population of unit compounds each of iron and oxygen atoms, oxides of iron, primarily the minerals called magnetite and hematite), or as mixtures. Some elements are abundant on Earth. For example, the elements hydrogen and oxygen, as the compound water, H2O, make up the bulk of Earth's oceans, seas, lakes, rivers, and ponds, and make up the bulk (mass) of living cells and multicellular oganisms.[4] For another example, the element carbon supplies the backbone of numerous species of essential compounds of all animal and plant life on Earth as well of all the fossil fuels (natural gas, petroleum and coal), which are the remains of plant material that once lived. Some compounds may consist of one element only, for instance a nugget of pure gold is made up solely of gold atoms arranged in crystalline form. Very often gold is not pure but an alloy — a mixture — of the elements copper, silver, and gold. Oxygen gas consists of entities [see molecule] each having two oxygen atoms chemically bonded to each other, hence the gas consists of the element oxygen only.

Two substances consisting of the same single element may have very different chemical and physical properties. For example, graphite, used as lubricant, and diamond, used to harden drill tips, are both pure carbon. This phenomenon is known as allotropy. Oxygen atoms (O), oxygen gas (O2), and ozone (O3) — all found in the atmosphere — are allotropes of the same element, as they have different chemical and physical properties, yet each consists solely of oxygen atoms whose nuclei have identical numbers of protons.

Some of the 94 elements , such as the gas neon, are very rare on Earth. Some elements are stable, and will live as long as the universe, while some, known as the radioactive elements, have finite life times and decay into other elements while emitting radiation. For example, plutonium is a well-known radioactive element.

In addition to the 94 elements that occur naturally on Earth, about 23 other known elements that do not occur naturally on Earth have been man-made and are characterized by their constituent atoms having very short life times and being radioactive.

As noted, the atoms of each of the elements are distinguished by a unique atomic number, an integral (whole) number, symbolized Z, indicating the number of protons in the atom's nucleus. As protons each carry a positive charge, Z gives the positive charge of the nucleus in units of the so-called elementary charge, symbolized e. It is known that Z electrons (of charge −e, or negative e, and of much smaller mass than the proton) "orbit" the nucleus of an atom, so that an atom as a whole is electrically neutral. The following elements have their values of Z (Z-values) in brackets: hydrogen(1), oxygen(8), carbon(6), neon(10), plutonium(94). The naturally occurring elements have Z-values from 1 to 94 (with plutonium being extremely rare in nature and mainly man-made). The exclusively man-made elements on Earth run from Z = 95 to 118. The names of the elements are of historical origin and may differ among languages for an element. The atomic number (Z), on the other hand, is a unique and universal label of an element, as is its international chemical symbol consisting of one or two letters.

Whereas an element consists of a single species of atom characterized by a unique atomic number, many such species occur in varieties, called isotopes. The isotopes of an element differ among themselves by the number of neutrons in the nucleus, not in the number of protons. As neutrons have mass, and mass similar to that of protons, the isotopes of a given element have differing masses. For example, the most abundant form of hydrogen has a nucleus consisting only of a proton, the fairly rare isotope deuterium has a nucleus that contains one proton and one neutron, and the rarer isotope, tritium, has a nucleus that contains one proton and two neutrons. All three isotopes, while having differing masses, have by definition the same atomic number (=1) and hence are variations, or isotopes, of the same element.

There is a maximum to the number of unique elements that can exist due to the fact that a nucleus contains Z positively charged particles (protons). Those repel each other by Coulomb forces but can remain together by a special nuclear force referred to as the strong nuclear force. At a certain large number of protons the strong nuclear force will begin to lose out to the Coulomb force — increasingly so with increasing numbers of protons — and the nucleus will no longer be stable. This is likely to happen between Z = 120 and Z = 130.

For a long time, it was thought that elements were unchangeable, that one element could not be converted into another. Alchemists searched for many centuries in vain for the transmutation of the element lead into gold. However, when in 1919 Ernest Rutherford and coworkers showed the transmutation of the element nitrogen into the element oxygen, it became clear that elements can be transmuted.

The modern concept of element differs greatly from the Aristotelian concept. Aristotle recognized four elements: fire, water, earth and air, and postulated that they can be converted into each other. He wrote:

"….the elements are the primary constituents of bodies....
An element, we take it, is a body into which other bodies may be analysed, present in them potentially or in actuality
(which of these, is still disputable), and not itself divisible into bodies different in form. That, or something like it,
is what all men in every case mean by element….every body is either an element or composed of elements…."

    —Aristotle. On the Heavens Book III. Translated by J.L. Stocks.


Tables

See Atomic electron configuration for the orbital occupancies of atoms in their so-called ground state.
See also Periodic Table of Elements.

Chemical elements sorted on chemical symbol (CS)


CSNameZ CSNameZ CSNameZ

AcActinium 89 GdGadolinium 64 Po Polonium 84
AgSilver 47 GeGermanium 32 Pr Praseodymium 59
AlAluminum 13 H Hydrogen 1 Pt Platinum 78
AmAmericium 95 HeHelium 2 Pu Plutonium 94
ArArgon 18 HfHafnium 72 Ra Radium 88
AsArsenic 33 HgMercury 80 Rb Rubidium 37
AtAstatine 85 HoHolmium 67 Re Rhenium 75
AuGold 79 HsHassium 108 Rf Rutherfordium 104
B Boron 5 I Iodine 53 Rg Roentgenium 111
BaBarium 56 InIndium 49 Rh Rhodium 45
BeBeryllium 4 IrIridium 77 Rn Radon 86
BhBohrium 107 K Potassium 19 Ru Ruthenium 44
BiBismuth 83 KrKrypton 36 S Sulfur 16
BkBerkelium 97 LaLanthanum 57 Sb Antimony 51
BrBromine 35 LiLithium 3 Sc Scandium 21
C Carbon 6 LrLawrencium 103 Se Selenium 34
CaCalcium 20 LuLutetium 71 Sg Seaborgium 106
CdCadmium 48 MdMendelevium 101 Si Silicon 14
CeCerium 58 MgMagnesium 12 Sm Samarium 62
CfCalifornium 98 MnManganese 25 Sn Tin 50
ClChlorine 17 MoMolybdenum 42 Sr Strontium 38
CmCurium 96 MtMeitnerium 109 Ta Tantalum 73
CoCobalt 27 N Nitrogen 7 Tb Terbium 65
CrChromium 24 NaSodium 11 Tc Technetium 43
CsCesium 55 NbNiobium 41 Te Tellurium 52
CuCopper 29 NdNeodymium 60 Th Thorium 90
DbDubnium 105 NeNeon 10 Ti Titanium 22
DsDarmstadtium 110 NiNickel 28 Tl Thallium 81
DyDysprosium 66 NoNobelium 102 Tm Thulium 69
ErErbium 68 NpNeptunium 93 U Uranium 92
EsEinsteinium 99 O Oxygen 8 V Vanadium 23
EuEuropium 63 OsOsmium 76 W Tungsten 74
F Fluorine 9 P Phosphorus 15 Xe Xenon 54
FeIron 26 PaProtactinium 91 Y Yttrium 39
FmFermium 100 PbLead 82 Yb Ytterbium 70
FrFrancium 87 PdPalladium 46 Zn Zinc 30
GaGallium 31 PmPromethium 61 Zr Zirconium 40


Chemical elements sorted on atomic number (Z)


ZNameCS ZNameCS ZNameCS

1 Hydrogen H 38 Strontium Sr 75 Rhenium Re
2 Helium He 39 Yttrium Y 76 Osmium Os
3 Lithium Li 40 Zirconium Zr 77 Iridium Ir
4 Beryllium Be 41 Niobium Nb 78 Platinum Pt
5 Boron B 42 Molybdenum Mo 79 Gold Au
6 Carbon C 43 Technetium Tc 80 Mercury Hg
7 Nitrogen N 44 Ruthenium Ru 81 Thallium Tl
8 Oxygen O 45 Rhodium Rh 82 Lead Pb
9 Fluorine F 46 Palladium Pd 83 Bismuth Bi
10 Neon Ne 47 Silver Ag 84 Polonium Po
11 Sodium Na 48 Cadmium Cd 85 Astatine At
12 Magnesium Mg 49 Indium In 86 Radon Rn
13 Aluminum Al 50 Tin Sn 87 Francium Fr
14 Silicon Si 51 Antimony Sb 88 Radium Ra
15 Phosphorus P 52 Tellurium Te 89 Actinium Ac
16 Sulfur S 53 Iodine I 90 Thorium Th
17 Chlorine Cl 54 Xenon Xe 91 Protactinium Pa
18 Argon Ar 55 Cesium Cs 92 Uranium U
19 Potassium K 56 Barium Ba 93 Neptunium Np
20 Calcium Ca 57 Lanthanum La 94 Plutonium Pu
21 Scandium Sc 58 Cerium Ce 95 Americium Am
22 Titanium Ti 59 Praseodymium Pr 96 Curium Cm
23 Vanadium V 60 Neodymium Nd 97 Berkelium Bk
24 Chromium Cr 61 Promethium Pm 98 Californium Cf
25 Manganese Mn 62 Samarium Sm 99 Einsteinium Es
26 Iron Fe 63 Europium Eu 100 Fermium Fm
27 Cobalt Co 64 Gadolinium Gd 101 Mendelevium Md
28 Nickel Ni 65 Terbium Tb 102 Nobelium No
29 Copper Cu 66 Dysprosium Dy 103 Lawrencium Lr
30 Zinc Zn 67 Holmium Ho 104 Rutherfordium Rf
31 Gallium Ga 68 Erbium Er 105 Dubnium Db
32 Germanium Ge 69 Thulium Tm 106 Seaborgium Sg
33 Arsenic As 70 Ytterbium Yb 107 Bohrium Bh
34 Selenium Se 71 Lutetium Lu 108 Hassium Hs
35 Bromine Br 72 Hafnium Hf 109 Meitnerium Mt
36 Krypton Kr 73 Tantalum Ta 110 Darmstadtium Ds
37 Rubidium Rb 74 Tungsten W 111 Roentgenium Rg

Explanation of names

  1. Ag (silver) is from Argentum
  2. Au (gold) is from Aurum
  3. Cu (copper) is from Cuprum
  4. Fe (iron) is from Ferrum
  5. Hg (mercury) is from Hydrargyrum
  6. K (potassium) is from Kalium
  7. Na (sodium) is from Natrium
  8. Pb (lead) is from Plumbum
  9. Sb (antimony) is from Stibium
  10. Si (silicon) is from Silicium
  11. Sn (tin) is from Stannum
  12. W (tungsten) is from Wolfram
  13. Man-made elements Z = 112, ..., 118 are not listed

References and notes

  1. P.W. Atkins PW (1995). The Periodic Kingdom: A Journey into the Land of the Chemical Elements. Basic Books. ISBN 0-465-07265-0.  Full-Text (See page 3)
  2. Mary Eagleson (1994). Concise Encyclopedia of Chemistry, Revised and translated edition. Walter de Gruyter. ISBN 3-11-011451-8. 
  3. 92 Naturally Occurring Elements? According to James B. Calvert, Associate Professor Emeritus of Engineering, University of Denver: the trite phrase "the 92 naturally-occurring chemical elements" is often seen, but is incorrect.
  4. Note: A typical living cell consists of 75-85% water by mass.