3j-symbol: Difference between revisions
imported>Subpagination Bot m (Add {{subpages}} and remove any categories (details)) |
imported>Paul Wormer No edit summary |
||
Line 1: | Line 1: | ||
{{subpages}} | {{subpages}} | ||
In [[physics]] and [[mathematics]], Wigner '''3''-jm'' symbols''', also called 3''j'' symbols, | |||
Wigner '''3''-jm'' symbols''', also called 3''j'' symbols, | are related to the [[Clebsch-Gordan coefficients]] of the [[group]]s [[SU(2)]] and [[SO(3)]] through | ||
are related to [[Clebsch-Gordan coefficients]] | |||
through | |||
:<math> | :<math> | ||
\begin{pmatrix} | \begin{pmatrix} | ||
Line 11: | Line 9: | ||
\equiv \frac{(-1)^{j_1-j_2-m_3}}{\sqrt{2j_3+1}} \langle j_1 m_1 j_2 m_2 | j_3 \, {-m_3} \rangle. | \equiv \frac{(-1)^{j_1-j_2-m_3}}{\sqrt{2j_3+1}} \langle j_1 m_1 j_2 m_2 | j_3 \, {-m_3} \rangle. | ||
</math> | </math> | ||
The 3''j'' symbols show more symmetry in permutation of the labels than the corresponding Clebsch-Gordan coefficients. | |||
== Inverse relation == | == Inverse relation == |
Revision as of 10:02, 6 August 2009
In physics and mathematics, Wigner 3-jm symbols, also called 3j symbols, are related to the Clebsch-Gordan coefficients of the groups SU(2) and SO(3) through
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{pmatrix} j_1 & j_2 & j_3\\ m_1 & m_2 & m_3 \end{pmatrix} \equiv \frac{(-1)^{j_1-j_2-m_3}}{\sqrt{2j_3+1}} \langle j_1 m_1 j_2 m_2 | j_3 \, {-m_3} \rangle. }
The 3j symbols show more symmetry in permutation of the labels than the corresponding Clebsch-Gordan coefficients.
Inverse relation
The inverse relation can be found by noting that j1 - j2 - m3 is an integral number and making the substitution Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m_3 \rightarrow -m_3 }
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle j_1 m_1 j_2 m_2 | j_3 m_3 \rangle = (-1)^{j_1-j_2+m_3}\sqrt{2j_3+1} \begin{pmatrix} j_1 & j_2 & j_3\\ m_1 & m_2 & -m_3 \end{pmatrix}. }
Symmetry properties
The symmetry properties of 3j symbols are more convenient than those of Clebsch-Gordan coefficients. A 3j symbol is invariant under an even permutation of its columns:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{pmatrix} j_1 & j_2 & j_3\\ m_1 & m_2 & m_3 \end{pmatrix} = \begin{pmatrix} j_2 & j_3 & j_1\\ m_2 & m_3 & m_1 \end{pmatrix} = \begin{pmatrix} j_3 & j_1 & j_2\\ m_3 & m_1 & m_2 \end{pmatrix}. }
An odd permutation of the columns gives a phase factor:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{pmatrix} j_1 & j_2 & j_3\\ m_1 & m_2 & m_3 \end{pmatrix} = (-1)^{j_1+j_2+j_3} \begin{pmatrix} j_2 & j_1 & j_3\\ m_2 & m_1 & m_3 \end{pmatrix} = (-1)^{j_1+j_2+j_3} \begin{pmatrix} j_1 & j_3 & j_2\\ m_1 & m_3 & m_2 \end{pmatrix}. }
Changing the sign of the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m} quantum numbers also gives a phase:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{pmatrix} j_1 & j_2 & j_3\\ -m_1 & -m_2 & -m_3 \end{pmatrix} = (-1)^{j_1+j_2+j_3} \begin{pmatrix} j_1 & j_2 & j_3\\ m_1 & m_2 & m_3 \end{pmatrix}. }
Selection rules
The Wigner 3j is zero unless , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j_1+j_2 + j_3} is integer, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |m_i| \le j_i} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |j_1-j_2|\le j_3 \le j_1+j_2} .
Scalar invariant
The contraction of the product of three rotational states with a 3j symbol,
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{m_1=-j_1}^{j_1} \sum_{m_2=-j_2}^{j_2} \sum_{m_3=-j_3}^{j_3} |j_1 m_1\rangle |j_2 m_2\rangle |j_3 m_3\rangle \begin{pmatrix} j_1 & j_2 & j_3\\ m_1 & m_2 & m_3 \end{pmatrix}, }
is invariant under rotations.
Orthogonality Relations
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (2j+1)\sum_{m_1 m_2} \begin{pmatrix} j_1 & j_2 & j\\ m_1 & m_2 & m \end{pmatrix} \begin{pmatrix} j_1 & j_2 & j'\\ m_1 & m_2 & m' \end{pmatrix} =\delta_{j j'}\delta_{m m'}. }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{j m} (2j+1) \begin{pmatrix} j_1 & j_2 & j\\ m_1 & m_2 & m \end{pmatrix} \begin{pmatrix} j_1 & j_2 & j\\ m_1' & m_2' & m \end{pmatrix} =\delta_{m_1 m_1'}\delta_{m_2 m_2'}. }
References
- E. P. Wigner, On the Matrices Which Reduce the Kronecker Products of Representations of Simply Reducible Groups, unpublished (1940). Reprinted in: L. C. Biedenharn and H. van Dam, Quantum Theory of Angular Momentum, Academic Press, New York (1965).
- A. R. Edmonds, Angular Momentum in Quantum Mechanics, 2nd edition, Princeton University Press, Pinceton, 1960.
- D. M. Brink and G. R. Satchler, Angular Momentum, 3rd edition, Clarendon, Oxford, 1993.
- L. C. Biedenharn and J. D. Louck, Angular Momentum in Quantum Physics, volume 8 of Encyclopedia of Mathematics, Addison-Wesley, Reading, 1981.
- D. A. Varshalovich, A. N. Moskalev, V. K. Khersonskii, Quantum Theory of Angular Momentum, World Scientific Publishing Co., Singapore, 1988.