3j-symbol: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Subpagination Bot
m (Add {{subpages}} and remove any categories (details))
imported>Paul Wormer
No edit summary
Line 1: Line 1:
{{subpages}}
{{subpages}}
 
In [[physics]] and [[mathematics]],  Wigner '''3''-jm'' symbols''', also called 3''j'' symbols,
Wigner '''3''-jm'' symbols''', also called 3''j'' symbols,
are related to the [[Clebsch-Gordan coefficients]] of the [[group]]s [[SU(2)]] and [[SO(3)]] through
are related to [[Clebsch-Gordan coefficients]]
through
:<math>
:<math>
\begin{pmatrix}
\begin{pmatrix}
Line 11: Line 9:
\equiv \frac{(-1)^{j_1-j_2-m_3}}{\sqrt{2j_3+1}} \langle j_1 m_1 j_2 m_2 | j_3 \, {-m_3} \rangle.
\equiv \frac{(-1)^{j_1-j_2-m_3}}{\sqrt{2j_3+1}} \langle j_1 m_1 j_2 m_2 | j_3 \, {-m_3} \rangle.
</math>
</math>
The 3''j'' symbols show more symmetry in permutation of the labels than  the corresponding Clebsch-Gordan coefficients.


== Inverse relation ==
== Inverse relation ==

Revision as of 10:02, 6 August 2009

This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In physics and mathematics, Wigner 3-jm symbols, also called 3j symbols, are related to the Clebsch-Gordan coefficients of the groups SU(2) and SO(3) through

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{pmatrix} j_1 & j_2 & j_3\\ m_1 & m_2 & m_3 \end{pmatrix} \equiv \frac{(-1)^{j_1-j_2-m_3}}{\sqrt{2j_3+1}} \langle j_1 m_1 j_2 m_2 | j_3 \, {-m_3} \rangle. }

The 3j symbols show more symmetry in permutation of the labels than the corresponding Clebsch-Gordan coefficients.

Inverse relation

The inverse relation can be found by noting that j1 - j2 - m3 is an integral number and making the substitution Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m_3 \rightarrow -m_3 }

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle j_1 m_1 j_2 m_2 | j_3 m_3 \rangle = (-1)^{j_1-j_2+m_3}\sqrt{2j_3+1} \begin{pmatrix} j_1 & j_2 & j_3\\ m_1 & m_2 & -m_3 \end{pmatrix}. }

Symmetry properties

The symmetry properties of 3j symbols are more convenient than those of Clebsch-Gordan coefficients. A 3j symbol is invariant under an even permutation of its columns:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{pmatrix} j_1 & j_2 & j_3\\ m_1 & m_2 & m_3 \end{pmatrix} = \begin{pmatrix} j_2 & j_3 & j_1\\ m_2 & m_3 & m_1 \end{pmatrix} = \begin{pmatrix} j_3 & j_1 & j_2\\ m_3 & m_1 & m_2 \end{pmatrix}. }

An odd permutation of the columns gives a phase factor:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{pmatrix} j_1 & j_2 & j_3\\ m_1 & m_2 & m_3 \end{pmatrix} = (-1)^{j_1+j_2+j_3} \begin{pmatrix} j_2 & j_1 & j_3\\ m_2 & m_1 & m_3 \end{pmatrix} = (-1)^{j_1+j_2+j_3} \begin{pmatrix} j_1 & j_3 & j_2\\ m_1 & m_3 & m_2 \end{pmatrix}. }

Changing the sign of the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m} quantum numbers also gives a phase:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{pmatrix} j_1 & j_2 & j_3\\ -m_1 & -m_2 & -m_3 \end{pmatrix} = (-1)^{j_1+j_2+j_3} \begin{pmatrix} j_1 & j_2 & j_3\\ m_1 & m_2 & m_3 \end{pmatrix}. }

Selection rules

The Wigner 3j is zero unless , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j_1+j_2 + j_3} is integer, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |m_i| \le j_i} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |j_1-j_2|\le j_3 \le j_1+j_2} .

Scalar invariant

The contraction of the product of three rotational states with a 3j symbol,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{m_1=-j_1}^{j_1} \sum_{m_2=-j_2}^{j_2} \sum_{m_3=-j_3}^{j_3} |j_1 m_1\rangle |j_2 m_2\rangle |j_3 m_3\rangle \begin{pmatrix} j_1 & j_2 & j_3\\ m_1 & m_2 & m_3 \end{pmatrix}, }

is invariant under rotations.

Orthogonality Relations

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (2j+1)\sum_{m_1 m_2} \begin{pmatrix} j_1 & j_2 & j\\ m_1 & m_2 & m \end{pmatrix} \begin{pmatrix} j_1 & j_2 & j'\\ m_1 & m_2 & m' \end{pmatrix} =\delta_{j j'}\delta_{m m'}. }

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{j m} (2j+1) \begin{pmatrix} j_1 & j_2 & j\\ m_1 & m_2 & m \end{pmatrix} \begin{pmatrix} j_1 & j_2 & j\\ m_1' & m_2' & m \end{pmatrix} =\delta_{m_1 m_1'}\delta_{m_2 m_2'}. }


References

  • E. P. Wigner, On the Matrices Which Reduce the Kronecker Products of Representations of Simply Reducible Groups, unpublished (1940). Reprinted in: L. C. Biedenharn and H. van Dam, Quantum Theory of Angular Momentum, Academic Press, New York (1965).
  • A. R. Edmonds, Angular Momentum in Quantum Mechanics, 2nd edition, Princeton University Press, Pinceton, 1960.
  • D. M. Brink and G. R. Satchler, Angular Momentum, 3rd edition, Clarendon, Oxford, 1993.
  • L. C. Biedenharn and J. D. Louck, Angular Momentum in Quantum Physics, volume 8 of Encyclopedia of Mathematics, Addison-Wesley, Reading, 1981.
  • D. A. Varshalovich, A. N. Moskalev, V. K. Khersonskii, Quantum Theory of Angular Momentum, World Scientific Publishing Co., Singapore, 1988.